FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN SHIELDED METAL ARC WELDING OF MILD STEEL PLATES

No Thumbnail Available
Date
2015-10
Authors
MUSA, Ibrahim Ugbede
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study investigates the prediction of residual stresses developed in shielded metal arc welding of ASTM A36 mild steel platesvia simulation and experiments. The specific objectives were to simulate the shielded manual metal arc welding process by using the finite element method in ANSYS Multiphysics Version 14, to produce experimental samples of butt welded ASTM A36 mild steel plates, to determine the residual stresses developed in the weldment of the steel plates and those generated from the Finite Element Model Simulation, and to establish correlation between experimental and predicted values of residual stress. Findings indicate that the maximum temperature was 1827°C while that at the end of the plate was maintained at around 27°C. From the Finite Element Model Simulation, the transverse residual stress in the x direction (σx) had a maximum value of 375MPa (tensile) and minimum value of -183MPa (compressive) while in the y direction (σy), the maximum value of 172MPa (tensile) and minimum value of 0.The longitudinal stress in the x direction (σx) indicated a maximum value of 355MPa (tensile) and a minimum value of -10MPa (compressive) while in the y direction (σy), the maximum value was 167MPa and the minimum value of the residual stress was -375MPa. The experimental values as measured by the X-Ray diffractometer were similar as transverse residual stress (σx) along the weld line in the transverse x directionvaried from 353MPa (tensile) to -209MPa (compressive) while in the y direction, stress (σy) along the weld line varied from 177MPa (tensile) to 0. The longitudinal stress measured by the X-Ray diffractometer in the x direction (σx) varied from 339MPa (tensile) to 0 (compressive) while in the y direction (σy) varied from 171MPa (tensile) to -366MPa (compressive). The result of the correlation coefficient test between the experimental and finite element results of residual stresses the was close to unity (1) which indicates a positive uphill linear relationship. The result of the F-Test conducted was also close to unity (1) which indicates the level of variance between the experimental and finite element results of residual stresses was not significant. Based on these results, it was established that using the 3D FEM analysis, results of residual stresses obtained was in good agreement with the experiment
Description
A DISERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA, IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc) IN PRODUCTION ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING, FACULTY OF ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA
Keywords
FINITE ELEMENT MODEL,, PREDICTING,, RESIDUAL STRESSES,, SHIELDED METAL,, ARC WELDING,, MILD STEEL PLATE,
Citation
Collections