THE EFFECT OF QUININE-ARTESUNATE CO-ADMINISTRATION ON SOME BIOCHEMICAL PARAMETERS IN *PLASMODIUM BERGHEI* PARASITIZED SWISS ALBINO MICE AND RATS

By

RABIAH SHEHU BIDA

DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS
FACULTY OF PHARMACEUTICAL SCIENCES
AHMADU BELLO UNIVERSITY, ZARIA
NIGERIA

SEPTEMBER 2014
THE EFFECT OF QUININE-ARTESUNATE CO-ADMINISTRATION ON SOME BIOCHEMICAL PARAMETERS IN *PLASMODIUM BERGHEI* PARASITIZED SWISS ALBINO MICE AND RATS

By

RABIAH SHEHU BIDA, BSc. Biochemistry (A.B.U.) 2009
MSc/Pharm-Sci/1678/11-12

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES,
AHMADU BELLO UNIVERSITY, ZARIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD
OF
A MASTER DEGREE IN PHARMACOLOGY

DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS
FACULTY OF PHARMACEUTICAL SCIENCES
AHMADU BELLO UNIVERSITY, ZARIA
NIGERIA

MAY 2014
DECLARATION

I declare that the work in this thesis entitled “THE EFFECT OF QUININE-ARTESUNATE CO-ADMINISTRATION ON SOME BIOCHEMICAL PARAMETERS IN *PLASMODIUM BERGHEI* PARASITIZED SWISS ALBINO MICE AND RATS” has been carried out by me in the Department of Pharmacology and Therapeutics. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this thesis has been previously presented for another degree or diploma at this or any other institution.

Shehu Bida, Rabiah
Name of Student

____________________ ______________
Signature Date
CERTIFICATION

This thesis entitled “THE EFFECT OF QUININE-ARTESUNATE CO-ADMINISTRATION ON SOME BIOCHEMICAL PARAMETERS IN PLASMODIUM BERGHEI PARASITIZED SWISS ALBINO MICE AND RATS” by RABIAH SHEHU BIDA meets the regulations governing the award of the degree of Master of Science in Pharmacology of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.

Prof. J.A. Anuka
Chairman, Supervisory Committee
(Name) (Signature) (Date)

Dr. T.O. Olurishe
Member, Supervisory Committee
(Name) (Signature) (Date)

Dr. A.U. Zezi
Head of Department
(Name) (Signature) (Date)

Prof. A.Z. Hassan
Dean, School of Postgraduate Studies
(Name) (Signature) (Date)
ACKNOWLEDGEMENTS

My profound gratitude goes to my Rabb, Almighty Allah (SWT) for His Mercy and Blessings upon me. ALHAMDULILLAH!!

My special appreciation goes to my Supervisors, Prof. J.A. Anuka and Dr. T.O. Olurishe for their support and words of encouragement during the course of this research work.

Words cannot express my gratitude towards my parents Hajiya Fatima B. Shehu and Prof. Shehu Bida for their moral, spiritual and financial support throughout the progress of this work and also for their parental love and care. May Almighty Allah reward you. I am very much grateful to my siblings, for their encouragement and support. My aunties and other relatives for their support, I say thank you and God bless. I will not forget to acknowledge my cousin and lecturer for his mentorship in the Department of Pharmacology and Therapeutics, Dr. Yerima Musa, thanks a lot.

I appreciate my lecturers and the technical staff in the Department of Pharmacology and Therapeutics; I say thanks for the moral support.

I appreciate the sisterly support of my friend, Fatima I.H., you contributed in making this programme successful. I cannot forget to appreciate my friends and colleagues, too many to mention who stood by me even during the hard times, I am very grateful for your supports. May Allah reward you all, Amin.
ABSTRACT

Malaria has been the leading cause of morbidity and mortality in most Sub-saharan Africa and Southeastern Asia. Combination therapy has been recommended for treatment of malaria and this could lead to drug-drug interaction. This work titled “The effect of Quinine-Artesunate co-administration on some biochemical parameters on healthy and Plasmodium berghei parasitized Swiss albino mice and rats” was carried out to investigate the effect of Quinine (60 mg/kg)-Artesunate (30 mg/kg) co-administration following 7 days pre treatment. Mice were infected with Plasmodium berghei NK65 strain. Parasitaemia was checked after Geimsa stain and viewed for infected blood cells. Five days of establishment of the infection, they were treated for 7 days. The effect on blood glucose level was evaluated using the glucose oxidase principle; the Liver functions and Oxidative stress were assessed using colorimetric kits. The fasting blood glucose and oral glucose tolerance test of the healthy animals were also checked. The study also evaluated the effect of Quinine-Artesunate co-administration on acetic acid induced algesia in mice; while brewer’s yeast induced pyrexia was carried out in rats. The effect of the single drug (Quinine or Artesunate) on pain and pyrexia was compared with concurrent administration of quinine and Ibuprofen (100 mg/kg) or artesunate and Ibuprofen. Results of Quinine-Artesunate co-administration did not show any significant reduction in glucose level compared to normal control, infected control, quinine and artesunate groups. The co-administration did not show any significant increase in liver enzymes compared to the other groups. This is in contrast to quinine group that showed significant increase ($P<0.01$) in liver enzyme (ALT) compared to normal control group of parasitized animal’s study. The quinine group also showed significant increase in AST
level in healthy animals compared to Artesunate group ($P<0.05$). Quinine-Artesunate co-administration did not show significant difference in lipid peroxidation and antioxidant enzymes biomarkers in healthy animals compared to quinine, artesunate and the normal control groups. It showed less significant increase in lipid peroxidation (MDA) compared to normal control group ($P<0.05$) than quinine ($P<0.01$) and artesunate ($P<0.01$) groups. Quinine-Artesunate group also showed a lesser significant decrease ($P<0.01$) in antioxidant enzyme (CAT) compared to normal control group than artesunate and quinine groups ($P<0.0001$). Quinine-Artesunate group did not show significant difference in antioxidant enzymes compared to the infected control group. In healthy animals, Quinine-Artesunate did not show significant difference in organ body weight ratio between the groups but showed significant decrease in liver-body weight ratio in parasitized animals compared to the infected control group ($P<0.0001$). However, no significant difference was seen in liver-body weight ratio when it was compared to the normal control group as seen in the quinine, artesunate and infected control groups. A significant decrease was also seen in Quinine-Artesunate group compared to the quinine group ($P<0.01$) in the spleen-body weight ratio. No significant difference was seen in haematological parameters of healthy animals in Quinine-Artesunate group compared to other groups. The Quinine-Artesunate group did not show significant difference during concurrent administration of Ibuprofen in pain and pyrexia.

This study however, showed that Quinine and Artesunate are better in efficacy and safety when co-administered and does not reduce the efficacy of ibuprofen during pain and pyrexia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>ABBREVIATIONS, DEFINITIONS, GLOSSARY AND SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>1</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Preamble</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Statement of Research Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Justification</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Aim</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Hypothesis</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>6</td>
</tr>
<tr>
<td>2.0 LITERATURE REVIEW</td>
<td>6</td>
</tr>
</tbody>
</table>
2.1 Malaria ... 6
2.2 Prevalence of Malaria ... 6
2.3 Transmission .. 7
2.4 Signs and Symptoms of Malaria ... 8
2.5 Classification of Malaria .. 8
2.6 Diagnosis of Malaria ... 9
2.7 Life cycle of Malaria Parasite .. 10
 2.7.1 The Asexual Erythrocytic Phase in Humans ... 10
 2.7.2 The Sexual Stage in Mosquito ... 11
2.8 Malaria and Glucose Metabolism .. 12
2.9 Oxidative Stress in Malaria ... 13
2.10 Treatment of Malaria ... 14
2.11 Quinine .. 17
 2.11.1 Chemistry ... 18
 2.11.2 Pharmacokinetics ... 18
 2.11.3 The Mechanism of Action of Quinine ... 19
 2.11.4 Resistance ... 20
 2.11.5 Therapeutic uses .. 20
 2.11.6 Adverse Effects ... 22
 2.11.7 Contraindications and Drug Interactions .. 23
3.10 Analgesic Study: Acetic Acid Induced Abdominal Constrictions 38
3.11 Anti-Pyretic Study: Brewer’s Yeast Induced Pyrexia Model 39
3.12 Statistical Analysis .. 39

CHAPTER FOUR ... 41

4.0 RESULTS .. 41

4.1 The Effect of Quinine, Artesunate, Quinine-Artesunate Co-administration and their Separate Therapy on Blood Glucose Level in Swiss Albino Mice 41
4.2 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oral Glucose Tolerance Test in Swiss Albino Mice ... 42
4.3 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test of Albino Mice ... 44
4.4 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers on Swiss Albino Mice .. 45
4.5 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Hematological Parameters in Swiss Albino Mice .. 46
4.6 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight in Swiss Albino Mice ... 47
4.7 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Random Blood Glucose Level in P. berghei Infected Mice 48
4.8 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Fasting Blood Glucose Level in P. berghei infected mice 49
4.9 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test in *Plasmodium berghei* Infected Mice50

4.10 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers in *P. berghei* Infected Mice.................................51

4.11 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight of *P. berghei* Infected Mice.................................53

4.12 The Effect of Quinine-Artesunate Co-administration on Acetic Acid Induced Writhes in Mice...55

4.13 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Brewer’s Yeast Induced Pyrexia in Rats...56

CHAPTER FIVE ..58

5.0 DISCUSSIONS ..58

CHAPTER SIX ...65

6.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS65

6.1 Summary ...65

6.2 Conclusion ...65

6.3 Recommendations ...66

REFERENCES ...68

APPENDIX...80
LIST OF TABLES

Table 3.1 Experimental Design of Drug Administration in the Animals.............33
Table 3.2 Experimental Design of Drug Administration in the Uninfected Mice..33
Table 3.3 Experimental Design of Drug Administration in Algesic Mice and Pyretic Rats..33
Table 4.1 The Effect of Quinine-Artesunate Co-administration on Fasting Blood Glucose Level in Swiss Albino Mice........................... 41
Table 4.2 The Effect of Quinine-Artesunate Co-administration on Oral Glucose Tolerance Test in Swiss Albino Mice................................. 43
Table 4.3 The Effect of Quinine-Artesunate Co-administration on Liver Function Test in Swiss Albino Mice 44
Table 4.4 The Effect of Quinine-Artesunate Co-administration on Oxidative Stress Biomarkers Test in Swiss Albino Mice............................ 45
Table 4.5 The Effect of Quinine-Artesunate Co-administration on Haematological Indices in Swiss Albino Mice................................. 46
Table 4.6 The Effect of Quinine-Artesunate Co-administration on Relative Organ Body Weight in Swiss Albino Mice.............................. 47
Table 4.7 The Effect of Quinine-Artesunate Co-administration on Random Blood Glucose Level in P. berghei Infected Mice.. 48
Table 4.8 The Effect of Quinine-Artesunate Co-administration on Fasting Blood Glucose Level in P. berghei Infected Mice............................. 49
Table 4.9 The Effect of Quinine-Artesunate Co-administration on Liver Function Test in P. berghei Infected Mice............................... 50
Table 4.10 The Effect of Quinine-Artesunate Co-administration on Oxidative Stress Biomarkers Test in *P. berghei* Infected Mice 52

Table 4.11 The Effect of Quinine-Artesunate Co-administration on Relative Organ Body Weight of *P. berghei* Infected Mice 54

Table 4.12 The Effect of Quinine-Artesunate Co-administration on Brewer’s Yeast Induced Pyrexia in Wistar Albino Rats 57
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pictorial Representation of Malaria Parasite Life Cycle</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>The Effect of Quinine-Artesunate Co-administration on Acetic Acid Induced Writhes in Mice</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1: The Effect of Quinine-Artesunate Co-administration on Acetic Acid Induced Writhes in Mice ... 80

Appendix 2: The effect of Quinine-Artesunate Co-administration on Brewer’s Yeast Induced Pyrexia in Albino Rats .. 81

Appendix 3: Contents of the Pelletised Growers Feed .. 82
ABBREVIATIONS, DEFINITIONS, GLOSSARY AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABUTH</td>
<td>Ahmadu Bello University Teaching hospital</td>
</tr>
<tr>
<td>ACT</td>
<td>Artemisinin-based Combination Therapy</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Transaminase/Alanine Amino Transferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Transaminase/Aspartate Amino Transferase</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclo oxygenase</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>FBS/FBG</td>
<td>Fasting blood sugar/fasting blood glucose</td>
</tr>
<tr>
<td>g/dL</td>
<td>Grams per deciliter</td>
</tr>
<tr>
<td>G6PD</td>
<td>Glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamic Oxaloacetic Transaminase</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamic Pyruvic Transaminase</td>
</tr>
<tr>
<td>GPX</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>HGB</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>Hr</td>
<td>Hour</td>
</tr>
<tr>
<td>HSP</td>
<td>Heat shock protein</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IU/L</td>
<td>International unit per liter</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>L/kg</td>
<td>Liter per kilogram</td>
</tr>
<tr>
<td>MCH</td>
<td>mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCV</td>
<td>mean corpuscular volume</td>
</tr>
<tr>
<td>MDA</td>
<td>Malon dialdehyde</td>
</tr>
<tr>
<td>mg/dL</td>
<td>milligrams per deciliter</td>
</tr>
<tr>
<td>mg/ml</td>
<td>milligrams per milliliter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>NAD$^+$</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide (reduced)</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NIBR</td>
<td>national institute for biomedical research</td>
</tr>
<tr>
<td>nm</td>
<td>nano meter</td>
</tr>
<tr>
<td>NO</td>
<td>nitroxide</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non-Steroidal Anti-Inflammatory Drugs</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>OH</td>
<td>hydroxide ion</td>
</tr>
<tr>
<td>P. falciparum</td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td>P. malariae</td>
<td>Plasmodium malariae</td>
</tr>
<tr>
<td>P. ovale</td>
<td>Plasmodium ovale</td>
</tr>
<tr>
<td>P. vivax</td>
<td>Plasmodium vivax</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCV</td>
<td>packed cell volume</td>
</tr>
<tr>
<td>Pfmdr</td>
<td>plasmodium falciparum multi-drug resistance protein</td>
</tr>
<tr>
<td>PGE</td>
<td>prostaglandin E</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen power</td>
</tr>
<tr>
<td>PLT</td>
<td>platelet</td>
</tr>
<tr>
<td>Q-A</td>
<td>Quinine and Artesunate</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RBS/RBG</td>
<td>random blood sugar/random blood glucose</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>Rpm</td>
<td>Rate per minute</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric Acid</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric Acid Reactive Substances</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrotic factor</td>
</tr>
<tr>
<td>Trpm5</td>
<td>Transient receptors potential cation channel subfamily M member 5</td>
</tr>
<tr>
<td>v/v</td>
<td>volume by volume</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Preamble

Malaria is the leading cause of morbidity and mortality in most sub-Saharan Africa and Southeastern Asia. It is a mosquito-borne disease caused by a plasmodium parasite and transmitted by infected female anopheles mosquitoes (Malik and Khalafalla, 2004). Most of the malaria related morbidities and mortalities are caused by *Plasmodium falciparum* (Soniran *et al.*, 2012). Treatment involves the use of anti-malaria agents and supportive measures. In recent times Artemisinin derivatives have given rise to a renewed hope in fight against malaria, although resistance has been reported in places where their mono-therapy is common (WHO, 2009). Combination therapies have been recommended for the treatment of malaria to prevent early development of resistance to anti-malaria agents.

The Artemisinin based combination therapy (ACT), combining any of the Artemisinin derivatives with a longer acting anti-malaria agent in combating malaria, has brought about improved results in alleviating malaria (WHO, 2009).

Artesunate, a semi-synthetic derivative of Artemisinin used in the treatment of malaria when co-administered with Quinine (effective and longer acting anti-malaria) has shown greater efficacy than when either is used alone (Bartoloni *et al.*, 2010). Co-administration of anti-malaria drugs with other supportive drugs like analgesics in patients with malaria to reduce pain and pyrexia may lead to drug-drug interaction resulting to synergistic
effects, changes in toxicity levels of either drug, changes in efficacy of the drugs etc (Bartoloni et al., 2010).

1.2 Statement of Research Problem

Malaria has been a major health problem in much of the tropics and subtropics. It presents a major disease hazard for travelers that go to warmer climates where malaria is endemic. Severe malaria is a medical emergency that requires adequate and prompt treatment, because it progresses rapidly leading to death (Trampuz et al., 2003). The mortality of untreated severe malaria can be 100%, but with anti-malarial treatment, the overall mortality falls to 15-20% (WHO, 2006). Malaria infection mostly affects children under the age of five and pregnant women. It poses substantial risks to the mother, her foetus and the neonate during pregnancy (Stekette et al., 2001).

Malaria is associated with many symptoms and complications ranging from that of the uncomplicated malaria to severe malaria symptoms. Hypoglycaemia remains a common and important complication in severe Plasmodium falciparum malaria which occurs throughout the clinical course particularly in children and pregnant women (Ogetii et al., 2010). Hypoglycaemia is an independent risk factor for death in severe malaria and a well recognized adverse effect of parenteral quinine (Ogetii et al., 2010). Hypoglycaemia in children is independently associated with poor outcome and an increased mortality predominantly when accompanied by acidaemia or hyperlactataemia. Untreated hypoglycaemia can cause neurological damage and death, since glucose is the brain’s main fuel. Hence, treatment with quinine alone can pose health risk on the patient even
though it is effective (Okitolonda et al, 1987). Co-administration of quinine with another anti-malaria may be more beneficial.

Quinine and Artesunate combination has been reported to have a synergistic anti-malaria effect (Bartoloni et al., 2010). It is therefore important to investigate the effect of this combination as drug-drug interaction can occur. Anti-malarial drugs are co-administered with NSAIDs and other analgesics and anti-pyretic agents to reduce pain and pyrexia, associated with malaria. Concomitant administration of these drugs can cause change in one or more safety and efficacy outcomes of either of the drug that interacts with it. Increase in polypharmacy, where patients may take many drugs in the course of a day has increased interest in drug-drug interaction.

1.3 Justification

In some areas of the world, mosquitoes carrying malaria parasites have developed resistance to insecticides. In addition, the parasites have developed resistance to some anti-malaria drugs. These conditions have led to difficulty in controlling both the rate of infection and spread of the disease.

There is need for combination therapy in malaria, since monotherapy rapidly leads to drug resistance. Quinine and Artesunate have been combined in some studies and have shown synergistic effect. However, the effect of the combination on some biochemical parameters of the drugs in the body needs to be considered. Artemisinin based combination therapy (ACT) in the treatment of severe and uncomplicated malaria is
currently the front line drug regimen, hence combination with quinine having a longer half life may be considered more beneficial (Trevor et al., 2010). Most drug combinations can result in drug-drug interaction either synergistic or antagonistic side effects which are not supposed to be overlooked (Wong and Townley, 2011). More education is therefore needed by both the patients and the health care giver on the risks and potential interactions of drug preparations and administration. Co-administration of quinine with Artesunate may also limit toxicity. Therefore possible interaction can occur when quinine’s combination with Artesunate is co-administered with analgesics and these will need further research and pharmacovigilance (Achan et al., 2011).

Non-steroidal anti inflammatory drugs (NSAIDs) are one of the largest classes of medication in demand worldwide. They are mostly used for inflammation, pain and pyrexia. Most of their uses have been associated with toxicity especially to some body systems like the renal, hepatic, gastro-intestinal, dermatological and central nervous systems (Gupta et al., 2008). Combination of drugs with different mechanisms of action and potency of analgesia can be maximized, while the incidence of adverse effects is minimized (Miranda et al., 2007). Anti-malarial drugs are usually given alongside analgesics although, quinine and Artesunate have been shown to have analgesic, anti-inflammatory and anti-pyretic effects (Achan et al., 2011; Mannikoth et al., 2012). However, administration of these drugs together with NSAIDs could have additive effects.
1.4 Aim

The aim of this study is to evaluate the effect of Quinine-Artesunate co-administration on glucose level and some other biochemical parameters in Swiss albino mice and rats.

The specific objectives of this study are:

1. To investigate the effect of Quinine-Artesunate co-administration on blood glucose level in healthy and plasmodium parasitized albino mice.

2. To investigate the possible adverse effect of Quinine-Artesunate co-administration on liver function and oxidative stress biomarkers of healthy and plasmodium parasitized albino mice liver homogenates.

3. To investigate the effect of Quinine-Artesunate co-administration on haematological; and on the organ body weight ratio of the liver, spleen and kidney of healthy albino mice.

4. To investigate the effect of Quinine-Artesunate co-administration on the analgesic and antipyretic action of Ibuprofen in healthy albino mice and rats respectively.

1.5 Hypothesis

Quinine-Artesunate co-administration does not have effect on glucose level and some other biochemical parameters in Plasmodium berghei parasitized Swiss albino mice and rats.
CHAPTER TWO
LITERATURE REVIEW

2.1 Malaria

Malaria is a mosquito borne parasitic disease transmitted by plasmodium. There are four species of this parasite responsible for the human malaria. The most serious and lethal strain of the parasites is *Plasmodium falciparum*, which affects more red blood cells than the other types; *P. vivax*, *P. malariae* and *P. ovale* which cause less severe of the infection. Recently, a fifth species of the parasite *Plasmodium knowlesi*, is also responsible for causing malaria in Malaysia and areas of Southeast Asia (Barber *et al.*, 2013). These parasites are carried by anopheles mosquito vectors. The anopheles mosquito vectors responsible for transmitting the parasite are of different species, *Anopheles arabiensis*, *Anopheles gambiae* and *Anopheles funestus* (Malik and Khalafalla, 2004).

2.2 Prevalence of Malaria

Malaria is prevalent in tropical and subtropical regions because rainfall, warm temperatures, and stagnant waters provide habitats ideal for mosquito larvae. As earlier stated, malaria remains the predominant cause of illness and death in sub-Saharan African and Southeast Asian countries. High prevalence of malaria is also known in Nigeria (Soniran *et al.*, 2012). Recently, Nigeria was listed by WHO among high burden countries with limited evidence of decrease in malaria cases (WHO, 2010). Children under the age of 5 (five) and pregnant women are mostly at risk of having malaria,
although, it affects all age groups. The economic burden posed to Africa is about 12 billion US dollars per year. In 2011, there were 243 million cases worldwide with at least 655,000 deaths, 85% of which are under the age of five (Noble, 2013). Malaria is a major public health problem in Nigeria where it accounts for more cases and deaths than any other country in the world. Malaria is a risk for 97% of Nigerian population with the remaining 3% of which living in malaria free highlands. In Nigeria children under the age of 5 including infants are 56.9% at risk of malaria. There are estimated 100 million malaria cases with over 300,000 deaths per year in Nigeria. This compares with 215,000 deaths per year in from HIV/AIDS. Malaria contributes to an estimated 11% of maternal death (WHO, 2011).

2.3 Transmission

Plasmodium parasites are usually transmitted after the bite of an infected female *Anopheles* mosquito. Although infections also occur through transfusion of infected blood (transfusion malaria) and by congenital transmission from mother to her unborn child (congenital malaria), particularly in areas of stable malaria infection whereas, the mosquito is the definitive host and vector (Zucker, 1996). About 20 different species of *Anopheles* are locally important in the transmission of malaria around the world (WHO, 2013).

Malaria can be carried by mosquitoes in temperate climates, but the parasites disappear over the winter. Malaria commonly infects international travelers, sometimes fatally. Disease transmission can also be reduced by preventing mosquito bites by using
mosquito nets and insect repellents, or with mosquito-control measures such as spraying insecticides and draining standing water (WHO, 2013).

2.4 Signs and Symptoms of Malaria

Most of the symptoms of malaria are caused by the release of merozoites into the bloodstream. For example, anaemia which results from the destruction of red blood cells; and large amount of free haemoglobin being released into circulation after the breakup of red blood cells.

The clinical signs and symptoms of malaria include, fever and flu-like illness, such as chills, headache, muscle aches and tiredness which may be accompanied by nausea, vomiting and diarrhea. Malaria can also cause anemia because of the loss of erythrocytes and hypoglycaemia especially in children and pregnant women. If not promptly treated, malaria may cause kidney failure, seizures, mental confusion, coma and death (de Souza et al., 2010; Nadjm and Behrens, 2012).

2.5 Classification of Malaria

Malaria is classified into either uncomplicated or complicated (severe) malaria by the world health organization (WHO, 2006). It is diagnosed as severe when any of these criteria are present; decreased consciousness, significant weakness such that the person is unable to walk and lack of appetite. Two or more convulsions, low blood pressure, breathing difficulties and circulatory shock are usually present in complicated malaria. Kidney failure or haemoglobin in the urine, bleeding problems, or haemoglobin less than
5 g/dl, pulmonary oedema, hypoglycaemia, acidosis or lactate levels of greater than 5 mmol/l, a parasite level in the blood of greater than 100,000 per microlitre (µl) in low-intensity transmission areas, or 250,000 per µl in high-intensity transmission areas are also present in complicated malaria. In the absence of any of the above criteria, malaria is said to be uncomplicated. Malaria can also be classified as cerebral malaria. According to the WHO, cerebral malaria is defined as a severe *P. falciparum-*malaria presenting neurological symptoms, including coma (with a Glasgow coma scale rating of greater than 11, or a Blantyre coma scale greater than 3), or with a coma that lasts longer than 30 minutes after a seizure (de Souza et al., 2010; Nadjm and Behrens, 2012).

2.6 Diagnosis of Malaria

Clinical diagnosis of malaria is usually made on patients having a history of fever for the last 48 hours and lives or has travelled to malaria-endemic areas within the last 30 days. This diagnosis entails making a clinical assessment by following the accurate history of the illness and performing a physical examination (FMOH, 2012). Malaria diagnosis is typically followed by the microscopic examination of thin or thick blood films, Malaria blood smears taken at 6 to 12 hours intervals confirm the diagnosis, or with antigen-based rapid diagnostic tests (RDT). Modern techniques that use the polymerase chain reaction (PCR) to detect the parasite's DNA have also been developed, but these are not widely used in malaria-endemic areas due to their cost and complexity. In diagnosis, during a physical examination, enlarged liver or enlarged spleen may be found (Sanchez et al., 2004).
2.7 Life cycle of Malaria Parasite

In a complete cycle, both the human host and the female anopheles mosquito are required by the plasmodium. There are two stages in the life cycle of malaria infection, the asexual and the sexual phase. After a bite of man by the infected female anopheles mosquito, it transmits sporozoites from its salivary glands which rapidly enter the circulation and localize via specific recognition events in liver cells, where they transform, multiply, and develop into tissue schizonts. This liver stage is a primary asymptomatic (pre-erythrocytic or exo-erythrocytic) stage of infection and lasts for about 5 to 15 days, depending on the Plasmodium species. One sporozoite develops into a tissue schizont then rupture, each releasing ~20,000 merozoites. These enter the circulation, invade erythrocytes, and initiate the erythrocytic cycle. In erythrocytes, most parasites undergo asexual development from young ring forms to trophozoites and finally to mature schizonts. Schizont-containing erythrocytes rupture, each releasing 6 to 32 merozoites depending on the Plasmodium species. These erythrocytic parasites are turned into gametocytes (Miller et al., 2002; Sibley, 2004).

2.7.1 The Asexual Erythrocytic Phase in Humans

Parasites mature within erythrocytes in 48-72 hours. Merozoites released invade more erythrocytes to continue the cycle, which proceeds until death of the host or modulation by drugs or acquired partial immunity. Once plasmodia enter the erythrocytic cycle, they cannot reinvade the liver; thus, there is no tissue stage of infection for malaria contracted by transfusion. It is this process that produces febrile clinical attacks. The merozoites
invade more erythrocytes. For erythrocyte invasion, merozoites bind to specific ligands on the red cell surface (Miller et al., 2002; Sibley, 2004). The periodicity of parasitemia and febrile clinical manifestations depends on the timing of schizogony of a generation of erythrocytic parasites.

2.7.2 The Sexual Stage in Mosquito

When a mosquito bites an infected human the gametocytes from the erythrocytic parasites are transferred to the mosquito. Rapid fertilization occurs in the mosquito. Within 24 hours the zygotes turn into ookinetes and penetrate the gut to form oocysts which later develop into sporozoites. These sporozoites are transferred to the humans after mosquito bite, and the cycle continues.
2.8 Malaria and Glucose Metabolism

The major pathway for carbohydrate metabolism in plasmodia is glycolysis. The pentose phosphate pathway participates in a minor proportion while no activity was found in some plasmodia species such as the *P. vivax*. It has been observed that infected erythrocytes consume more glucose than the uninfected ones (Bass and John, 1912).
Most of the anti-malarials act by inhibiting the enzymes necessary for carbohydrate metabolism and transport in the parasites (Romanha, 2010).

Severe malaria is associated with hypoglycaemia. It occurs both at presentation to hospital and during the course of admission in children with severe malaria. The aetiology of hypoglycaemia is incompletely understood and is likely to be multi-factorial. Depletion of glucose stores due to starvation, parasite utilization of glucose, cytokine-induced impairment of gluconeogenesis have been implicated in malaria (Roe and Pasvol, 2009).

Hyperinsulinaemia, secondary to quinine therapy, has been advanced as an iatrogenic cause and is well established in adults. Data on its relationship in African children with severe malaria are relatively few, but what does exist indicates that hyper-insulinaemia rarely accompanies hypoglycaemia either at admission or during quinine treatment. However, considerable concern still exists and intravenous dosing is strongly recommended in solutions containing dextrose to avert the risk of hypoglycaemia (Ogetti et al., 2010).

2.9 Oxidative Stress in Malaria

Oxidative stress is a condition in which cellular antioxidant defenses are inadequate to completely inactivate the reactive oxygen species (ROS) generated. Endogenous antioxidant defenses include glutathione (GSH), antioxidant vitamins and enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and
glutathione peroxidase (GPx), as well as proteins involved in inducible cellular defense mechanisms such as heat shock proteins (HSP). When ROS generation exceeds the rate at which endogenous antioxidants can scavenge it, or when endogenous antioxidant defenses are reduced or weakened, macromolecules become targets for oxidative modifications (Parcario et al., 2012). Oxidative damage can severely compromise cell homeostasis and viability, or induce a variety of cellular responses through generation of secondary reactive species, ultimately leading to cell death. The effects of oxidative stress can be gleaned from the analysis of biomarkers of oxidative stress/damage, including oxidatively modified DNA bases, lipid peroxidation end-products, and oxidized proteins (Dalle-Donne et al., 2006).

Free radicals through oxidative stress have been involved in the physiopathogenesis of malaria. This involvement of free radicals may be as a result of the host cells’ defenses against the parasite or may be triggered by the parasites through pathogenic mechanisms (Parcario et al., 2012). The main reason probably for the induction of free radicals and apoptosis in malaria is the generation of hydroxyl radicals (OH−) in the liver (Parcario et al., 2012).

2.10 Treatment of Malaria

It has been recommended by the WHO, that all persons of all ages in all epidemiological settings with suspected malaria should receive a parasitological confirmation of diagnosis by either microscopy or rapid diagnostic test (RDT), and that uncomplicated P. falciparum malaria should be treated with Artemisinin-based Combination Therapy
Malaria, especially severe falciparum malaria, is a medical emergency that requires a hospital stay. The choice of medication depends in part on where one is and when one is infected. Treatment of malaria also depends on severity of the disease. Uncomplicated malaria can be treated with oral medications. The most effective strategy for *P. falciparum* infection is the use of Artemisinins in combination with other anti-malarials, this is known as Artemisinin based-combination therapy (ACT) so as to reduce the ability of the parasite to develop resistance to monotherapy (WHO, 2012).

Chloroquine was often used as an anti-malarial medication. However, chloroquine-resistant infections are common in some parts of the world. Other possible treatments for chloroquine-resistant infections include:

i. The combination of quinidine or quinine plus doxycycline, tetracycline, or clindamycin

ii. Atovaquone plus proguanil (Malarone)

iii. Mefloquine

iv. The combination of pyrimethamine and sulfadoxine (Fansidar)

For severe falciparum malaria, the following drugs are used:

i. Quinine-based regimens

ii. Artemisinin-based regimens

iii. Doxycycline, clindamycin
Medical care, including intravenous fluids, blood transfusions, well equipped laboratory, and other medications such as antibiotics, anti-pyretics, anticonvulsants and respiratory support may be needed during treatment (WHO, 2010).

Anti-malarial drugs can be classified thus;

A. Therapeutic Classification (According to the action in life cycle of malaria parasite)

a. Causal prophylaxis (Tissue schizontocides)
 i. Proguanil
 ii. Pyrimethamine
 iii. Primaquine (antibiotic)
 iv. Tetracycline (antibiotic)
 v. Fansidar

b. Clinical cure (Blood schizontocides (erythrocytic cycle))
 i. Chloroquine v. Halofantrine
 ii. Quinine vi. Tetracycline
 iii. Mefloquine vii. Artemisinin
 iv. Fansidar

c. Gametocides Primaquine

d. Hypnozoitocides Primaquine

e. Sporozoitocides
 i. Primaquine
 ii. Pyrimethamine
iii. Proguanil

B. Chemical Classification (According to the chemical structure)

i. 4-aminoquinolines; chloroquine, Amodiaquine

ii. Aryl-amino alcohols; Quinine, Mefloquine, Halofantrine

iii. 8-aminoquinolines; Primaquine

iv. Antifolate; Sulfadoxine, Proguanil, Pyrimethamine

v. Antibiotics; Tetracycline

vi. Qinghaosu; Artemisinin

vii. New drugs; Atovaquona, Pyronaridine, Benflumetol (Bruce-Chwatt, 1962)

2.11 Quinine

Quinine is a cinchona alkaloid, which was originally isolated from Cinchona succirubra. It is a white crystalline alkaloid that is almost insoluble in water but soluble in alcohol, ether, carbon disulfide, chloroform and glycerol. It is used chiefly (usually in the form of soluble hydrochloride or sulfate salts) in the treatment of falciparum malaria resistant to other anti-malarial drugs. Quinine is preferred where the disease has become highly resistant to other anti-malarial drugs such as quinacrine, chloroquine and primaquine. These other drugs were known to be more effective. In addition to its anti-malarial activity, quinine shows anti-bacteria, antipyretic, mild oxytocic, local anesthetic, cardiovascular stimulant and analgesic properties (Achan et al., 2011). It decreases the excitability of the motor endplate. Quinine is used to prevent cardiac arrhythmias and is
used in tonic beverages which are mixed with alcohols for bitter taste. A quinine supplement in diet is known to cause decrease in body weight and food intake in rats. It is also an *in vitro* inhibitor of Transient receptors potential cation channel subfamily M member 5 (Trpm5), a cation channel expressed in taste bud cells, the gastrointestinal tract, pancreas and glucose homeostasis (Cettour-Rose *et al.*, 2013).

2.11.1 Chemistry

Quinine and quinidine are the most important of the Cinchona extracts, which contain a mixture of more than 20 structurally related alkaloids. Both compounds contain a quinoline group attached through a secondary alcohol linkage to a quinuclidine ring. A methoxy side chain is attached to the quinoline ring and a vinyl to the quinuclidine. They differ only in the steric configuration at two of the three asymmetrical centers: the carbon bearing the secondary alcohol group and at the quinuclidine junction. Although quinine and quinidine have been synthesized, they are still obtained from natural sources (Krishna and White, 1996).

2.11.2 Pharmacokinetics

Quinine is readily absorbed when given orally or intramuscularly. In oral administration, absorption occurs mainly from the upper small intestine and is more than 80% complete, even in patients with marked diarrhea. After a single oral dose, plasma levels of quinine reach a maximum in 3 to 8 hours and, after distributing into an apparent volume of about 1.5 L/kg in healthy individuals, declines with a half-life of about 11 hours after termination of therapy. As reviewed by Krishna and White (1996), the pharmacokinetics
of quinine may change according to the severity of malarial infection. Values for both the apparent volume of distribution and the systemic clearance of quinine decrease, the latter more than the former, so that the average elimination half-life increases from 11 to 18 hours. After standard therapeutic doses, peak plasma levels of quinine may reach 15 to 20 mg/L in severely ill patients without causing major toxicity; in contrast, levels greater than 10 mg/L produce severe drug reactions in self-poisoning. The high levels of plasma α₁-acid glycoprotein produced in severe malaria may prevent toxicity by binding the drug and thereby reducing the free fraction of quinine. Concentrations of quinine are lower in erythrocytes (33% to 40%) and CSF (2% to 5%) than in plasma and the drug readily reaches fetal tissues (Newton et al., 1999).

The cinchona alkaloids are metabolized extensively, especially by hepatic CYP3A4 (Zhao et al., 1996), so only about 20% of an administered dose is excreted unaltered in the urine. There is no accumulation of the drugs in the body on continued administration. However, the major metabolite of quinine, 3-hydroxyquinine, retains some anti-malarial activity and can accumulate and possibly cause toxicity in patients with renal failure (Newton et al., 1999). Renal excretion of quinine itself is more rapid when the urine is acidic.

2.11.3 The Mechanism of Action of Quinine

It complexes with double strand DNA to prevent strand separation which results in blockade of DNA replication and transcription to RNA. This is thought to inhibit nucleic acid synthesis, protein synthesis and glycolysis in *Plasmodium falciparum* and bind with
haemazoin in parasitized erythrocytes. Quinine is solely a blood schizontocide (Newton et al., 1999).

2.11.4 Resistance
Increasing *in vitro* resistance of parasites from a number of areas suggests that quinine resistance was an increasing problem. Resistance to quinine is already common in some parts of Southeast Asia, especially border areas of Thailand, where the drug may fail if used alone to treat falciparum malaria. However, quinine still provides at least a partial therapeutic effect in most patients. The basis of *P. falciparum* resistance to quinine is complex. Patterns of *P. falciparum* resistance to quinine more closely resemble those of resistance to mefloquine and halofantrine rather than to chloroquine. Amplification of *Plasmodium falciparum* multi drug resistant drug (pfmdr1) in *P. falciparum*, implicated in resistance to mefloquine and halofantrine, can also confer resistance to quinine *in vitro*. However, the correlation is inconsistent (Dorsey et al., 2001; Sidhu et al., 2002). Quinine and quinidine sensitivity also can change in different strains (Sidhu et al., 2002). Recent evidence suggests the participation of a number of different transporter genes in conferring resistance to quinine (Mu et al., 2003). It should not be used routinely for prophylaxis to delay emergence of resistance (Trevor et al., 2010).

2.11.5 Therapeutic uses

2.11.5.1 Anti-malarial Actions
Quinine is widely used in chemotherapy of malaria especially in chloroquine resistant and cerebral malaria (White and Warrel, 1983; Hall and Peters, 1985). Quinine acts
primarily against asexual erythrocytic forms of malaria parasite and has little effect on hepatic forms of the parasites. It is a rapidly acting, highly effective blood schizonticide against the four species of human malaria parasites. The drug is gametocidal against \textit{P. vivax} and \textit{P. ovale} but not \textit{P. falciparum}. However, quinine, and its stereoisomer quinidine, is especially valuable for the parenteral treatment of severe illness owing to drug-resistant strains of \textit{P. falciparum}, even though these strains have become more resistant to both agents in certain parts of Southeast Asia and South America. Because of its toxicity and short half-life, quinine generally is not used for prophylaxis. It is commonly used with doxycycline or clindamycin to shorten the duration of therapy and limit toxicity level (Trevor, \textit{et al.}, 2010).

\textbf{2.11.5.2 Action on Skeletal Muscle}

Quinine and related cinchona alkaloids exert effects on skeletal muscle. Quinine increases the tension response to a single maximal stimulus delivered to muscle directly or through nerves, but it also increases the refractory period of muscle so that the response to tetanic stimulation is diminished. The excitability of the motor end-plate region decreases so that responses to repetitive nerve stimulation and to acetylcholine are reduced. Thus, quinine can antagonize the actions of physostigmine on skeletal muscle as effectively as curare. Quinine may also produce alarming respiratory distress and dysphagia in patients with myasthenia gravis. Quinine may cause symptomatic relief of myotonia congenita (Trevor \textit{et al.}, 2010).
2.11.5.3 Babesiosis and Other Uses of Quinine

Quinine is first-line therapy, in combination with clindamycin, in the treatment of infection with Babesia microti or other human babesial infections. Quinine can be used as an abortifacient because of its mild oxytocic effects. It has also been used as anti-inflammatory, a weak antipyretic and analgesic (Achan et al., 2011).

2.11.6 Adverse Effects

Quinine is associated with so many adverse effects including cinchonism, hypersensitivity reactions which include skin rashes, urticaria, angioedema and bronchospasm. Among the side effects is high-frequency hearing loss, impaired vision including blindness, nausea, and vomiting and epigastric pain. Hematologic abnormalities which include hemolysis (especially with G6PD deficiency), leukopenia, agranulocytosis, and thrombocytopenia are also adverse effects associated with quinine. Other adverse effects include granulomatous hepatitis, cardiovascular effects including cardiac conduction abnormalities, vascular instability with postural hypotension. Therapeutic doses may cause hypoglycemia as a consequence of stimulation of insulin release leading to hyperinsulinemia (Elbadawi et al., 2011). This is a particular problem in severe infections and in pregnant patients, who have increased sensitivity to insulin (Jaeger et al., 1987). Intravenous infusions of quinine and quinidine may cause thrombophlebitis. Quinine can stimulate uterine contractions, especially in the third trimester. However, this effect is mild, and it remains the drug of choice for severe falciparum malaria even during pregnancy. Severe hypotension can follow intravenous infusions of quinine or quinidine given very rapidly (Cettour-Rose, 2013).
2.11.7 Contraindications and Drug Interactions

Quinine is contraindicated in patients with a history of hypersensitivity and in the presence of haemoglobinuria during malaria and in patients with optic neuritis, or tinnitus (Karlsson et al., 1990). It should be used with caution in patients with atrial fibrillation and other myocardial conduction abnormalities because of its adverse cardiovascular effects (it causes increase in heart rate) (Achan et al., 2011). In patients with myasthenia, quinine may cause severe respiratory distress and dysphagia. In patients with glucose-6-phosphate deficiency, black water fever may be observed when quinine is used (Karlsson et al., 1990). It should not be given concurrently with mefloquine and should be used with caution in malarial patients who has previously received mefloquine chemoprophylaxis to prevent cardiotoxicity. Absorption may be blocked by aluminum-containing antacids. Quinine may enhance the effects of anticoagulants; it can raise plasma levels of warfarin and digoxin since cytochrome P450 3A4 has been shown to be important in the metabolism of quinine. Dosage must be reduced in renal insufficiency (Karlsson et al., 1990).

2.12 Artesunate: Artemisinin Derivative

Artemisinin based anti-malarials are drugs with unique structures and mode of action. They have been shown to have faster parasite clearance time and faster relief of symptoms (Sinclair et al., 2009). Artemisinin is a sesquiterpene lactone endoperoxide, a natural product derived from the weed; qing hao (Artemisia annua) also called sweet wormwood (Woodrow et al., 2005). It is the active component of a herbal medicine that
has been used in China as an anti pyretic for over 2000 years (Klayman, 1985). Three semi-synthetic derivatives with improved potency and bioavailability have since largely replaced the use of artemisinin. These include dihydroartemisinin, a reduced product; artemether, an oil-soluble methyl ether; and artesunate, the water-soluble hemisuccinate ester of dihydroartemisinin. Other derivatives of artemisinin include arteether and artemoil. The Artemisinins are potent and fast-acting anti-malarials. They are particularly well suited for the treatment of severe P. falciparum malaria and now play a key role in the combination therapy of drug-resistant infections. Artemisinin and its derivatives are the most important class of anti-malarial drugs effective for both uncomplicated and severe malaria (Maude et al., 2010). Millions of patients, especially in China and Southeast Asia, have been treated with endoperoxides, which generally are regarded to be safe (Newton et al., 2003b).

The mechanism of action of these drugs depends on the alkylation of plasmodium-specific proteins, which prevents the formation of hemozoin and consequently causes the release of free iron that is toxic to the parasite (Kamchonwongpaisan and Meshnick, 1996). However, literature has shown that artesunate also has immunomodulatory effects on mammalian cells (Li et al., 2006).

Apart from the above, Artemisinin and its derivates have been shown to possess anticancer (Efferth et al., 2001), antiviral (Kaptein et al., 2006), and anti-inflammatory (Mirshafiey et al., 2006; Tawfik et al., 1990; Veerasubramanian et al., 2006 and Wang et al., 2006) activities.
Artesunate has been compared with quinine in terms of efficacy and was found to be more superior in the time for clearing both fever and parasite but as good as quinine in terms of preventing mortality, although quinine is more preferable than Artesunate in cerebral malaria because it has a better recovery from coma (Patel et al., 2003).

Artesunate has been reported to block the production of IL-1β, IL-6 and IL-8 from TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes. In addition, it inhibits expression of toll-like receptor 4 induced by heat-killed *E. coli* lipopolysaccharide. It also inhibits production of TNF-α, IL-6 and nitric oxide (NO) (Xu et al., 2007). There are also evidences that artesunate attenuates experimental allergic airway inflammation via negative regulation of PI3K/Akt signaling pathway (Cheng et al., 2011). The effect of artesunate on inflammatory markers was studied during malaria infection and demonstrated that artesunate is able to exert a protective effect against the *P. berghei*-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1 in endothelial cells. The anti-malarial activity of artemisinin and its derivatives has been well demonstrated *in vitro* and *in vivo* (Janse et al., 1994; de Vries and Dien, 1996). The efficacy of anti-malarial drugs in an experimental model was addressed, with findings showing that artemether and artesunate show the highest efficacies in rescuing mice with late-stage cerebral malaria (Clemmer et al., 2011).
2.12.1 Mechanism of Action of Artesunate

Artesunate is extensively hydrolyzed by plasma esterases and perhaps also by CYP2A6. Its main metabolite, dihydro-artemisinin (DHA) is presumed to account for most of the in vivo anti-malarial activity. DHA is metabolized through glucuronidation (Xie, 2005).

2.12.2 Combination Therapy

Combination therapy is defined as the simultaneous use of two or more blood schizontocidal drugs with independent modes of action and different biochemical targets in the parasite. The most successful attempts at combating malaria have been in the administration of combination therapy. The combinations of drugs currently prescribed are divided into two categories;

(i) Non-artemisinin and Quinine based combinations and

(ii) Artemisinin based combinations (ACT).

World Health Organization recommends that P. falciparum malaria be treated always with a combination of two drugs acting at different biochemical sites within the parasites (WHO, 2006). World Health Organization recommendations list artemether plus lumefantrine, artesunate plus amodiaquine, artesunate plus mefloquine, and artesunate plus sulfadoxine plus pyrimethamine as optimal therapies for uncomplicated malaria in regions with resistance to older drugs (WHO, 2012). Artesunate is commonly used in combination with mefloquine to treat highly resistant falciparum malaria in Southeastern Asia and most places Artemether is available alone and as a fixed-dose combination with
lumefantrine. In the setting of multidrug resistance, many authorities now advocate combination therapy with an artemisinin as the optimal treatment for falciparum malaria.

2.13 Ibuprofen

Ibuprofen, a propionic acid is the most commonly used and frequently prescribed Non-Steroidal anti-inflammatory drug (NSAID) with an anti-inflammatory, analgesic and an anti-pyretic activity. It is a non-specific cyclooxygenase (COX) inhibitor resulting in decreased prostaglandin formation. Prostaglandins play important roles in production of inflammation, pain and pyrexia. Although, it has a weaker anti inflammatory action, it has a prominent analgesic and anti pyretic action (Burke et al., 2006).

Ibuprofen is supplied with a potency of 200-800 mg per caplet. It is usually given 3 times daily. It is well absorbed orally with peak plasma concentrations reached at 1-2 hours following oral administration. It is bio transformed rapidly with a serum half life of 1.8-2 hours. It is more than 99 % protein bound and extensively metabolized in the liver. The majority is excreted in the urine within 24 hours with a small amount also excreted through the stool. Excretion is virtually 100% within 24 hours of the last dose (Bushra and Aslan, 2010).

NSAIDS are widely used, inappropriately taken and potentially dangerous (Wilcox et al., 2005). Nevertheless, Ibuprofen exhibits few adverse effects. The major adverse reactions affect the gastro intestinal tract, kidney and coagulation system. Its side effects include Gastro Intestinal tract ulceration, blood thinning effects (avoid use with blood thinning...
drugs), decrease in efficacy of blood pressure lowering drugs, and an interference with secretion of lithium and aminoglycosides that can result in increased blood levels of those drugs. Other side effects include thrombocytopenia, headache, dizziness, rashes, blurred vision, fluid retention, oedema and in some cases toxic amblyopia (Rocca et al., 2005; Bushra and Aslsam, 2010).

2.14 Drug-Drug Interaction

Drug-drug interaction is a type of interaction in which the pharmacological effects are produced by two or more drugs administered concurrently or consecutively. It can lead to synergistic effect, potentiation, additive effect, or antagonistic effect and it can also lead to increase in toxicity level of the drugs. One of the factors that can alter the response to drugs is the concurrent administration of other drugs. Interest in drug-drug interactions has also increased because of the rise in polypharmacy, where patients have to take many drugs in the course of a day (Bedford et al., 1996). All effective drugs have the potential for producing both beneficial and harmful effects related to the desired and undesired effects. The particular response to a drug by a patient is driven in one way or another by the concentration of that drug and/or its metabolites at the target sites within the body. Usually, individuals vary in their responses to drugs which may be due to genetic differences, age, disease condition and the preference of other drugs which may interfere with the response pattern, polypharmacy etc. (GIDI, 2012).

There are several mechanisms by which drugs may interact, but most can be categorized as pharmacokinetic (absorption, distribution, metabolism, excretion), pharmacodynamic,
or both interactions (Williamson, 2003). Knowledge of the mechanism by which a given drug interaction occurs is often clinically useful, since the mechanism may influence both the time course and the methods of circumventing the interaction. Some important drug interactions occur as a result of two or more of these mechanisms (Blanchard et al., 2004).

Pharmacokinetic drug-drug interactions result from alteration in the dose/systemic exposure relationship, as reflected in a blood or plasma concentration–time curve, when an interacting drug induces or inhibits one or more routes of elimination or transport of a substrate drug. Inhibition of metabolism may be associated with increased blood levels and pharmacological activity of the substrate, but if the substrate is a prodrug, pharmacological activity may be reduced; in some cases, when the parent drug and its metabolite have equal effects, there may be no change in pharmacological activity despite large changes in blood levels of parent and metabolite (Bedford et al., 1996).

Pharmacodynamic drug-drug interaction may arise when the substrate and interacting drug affect the same physiological system or when one drug prevents an appropriate response to the other. Both pharmacokinetic and pharmacodynamic drug-drug interactions should be considered when two or more drugs are administered concurrently (Shiew-Mei Huang, 2008).

2.14.1 Quinine-Artesunate Combination

So many studies have compared the anti-plasmodial efficacy of Quinine-Artesunate co-administration with either of the drugs administered alone. It was found that quinine
administration followed by Artesunate yielded a better anti-malaria result (Newton et al., 2001; Newton et al., 2003a). The combination of quinine and artesunate has been shown to have a greater anti-malarial effect than when either drug is administered alone (Dondorp et al., 2005; Bartoloni et al, 2010).
CHAPTER THREE
MATERIALS AND METHODS

3.1 Laboratory Animals
Adult Albino rats of wistar strains and Swiss albino mice were used in this study. The animals were obtained from the Animal House of the Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University Zaria. They were housed in clean cages with saw dust as beddings containing 5-7 rats or mice and were used according to the animal care guidelines (National Institute of Health). The bedding was replaced every three days. The animals were fed with standard vital feed and given access to water from public supply ad libitum till the end of the experiment except otherwise required by specific experimental protocols such as fasting blood glucose determinations. They were allowed to acclimatize to the animal house conditions of temperature and humidity for a period of two days prior to the commencement of the study. All the experimental drugs were administered orally.

Animals used for the experiments were identified using a simple coded identification which was applied using concentrated picric acid solution or a permanent marker which were re-applied whenever fading was observed.

3.2 Chemicals, Drugs, Reagents and other Materials
The dosage forms of the drugs were used for the study. Acetic acid, brewer’s yeast, Phosphate buffered saline, Quinine (Embassy, India; batch number 30049063) 60 mg/kg,
Artesunate (Mekophar, Vietnam; batch number 10005FX) 30 mg/kg and Ibuprofen (Hovid, Malaysia; batch number BCO7509) 100 mg/kg. Digital weighing balance, syringes, needles, micro pipettes, cotton wool, digital Accu-check Advantage glucometer, Accu-check glucometer strips (Roche, U.S.A; LOT number 571911), observation chamber, hand gloves, dissecting kits, stop watch and record book.

3.3 Preparation of Drugs

Artesunate solution was prepared by weighing 30 mg of the Artesunate and dissolving it in 1 ml of normal saline to obtain the working concentration of 30 mg/ml and this was vigorously shaken for proper dissolution. The working concentration of Quinine (60 mg/ml) was prepared by dissolving 300 mg in 5 ml normal saline with vigorous shaking for proper dissolution. Ibuprofen was prepared by dissolving 100 mg in 1 ml of normal saline to obtain 100 mg/ml working concentration.
3.4 Study Design

All treatments were administered orally at the following doses; Normal saline 10 ml/kg, Artesunate 30 mg/kg, Quinine 60 mg/kg and Ibuprofen 100 mg/kg.

Table 3.1: Experimental design of drug administration in the plasmodium parasitized mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Normal Saline</td>
<td>10 ml/kg</td>
</tr>
<tr>
<td>Group 2</td>
<td>Normal Saline (Parasitized)</td>
<td>10 ml/kg</td>
</tr>
<tr>
<td>Group 3</td>
<td>Quinine</td>
<td>60 mg/kg</td>
</tr>
<tr>
<td>Group 4</td>
<td>Artesunate</td>
<td>30 mg/kg</td>
</tr>
<tr>
<td>Group 5</td>
<td>Quinine + Artesunate</td>
<td>60-30 mg/kg</td>
</tr>
</tbody>
</table>

Table 3.2: Experimental design of drug administration in the Healthy (uninfected) mice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Normal Saline</td>
<td>10 ml/kg</td>
</tr>
<tr>
<td>Group 2</td>
<td>Quinine</td>
<td>60 mg/kg</td>
</tr>
<tr>
<td>Group 3</td>
<td>Artesunate</td>
<td>30 mg/kg</td>
</tr>
<tr>
<td>Group 4</td>
<td>Quinine + Artesunate</td>
<td>60-30 mg/kg</td>
</tr>
</tbody>
</table>

Table 3.3: Experimental design of drug administration in algesic mice and pyretic rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Normal Saline</td>
<td>10 ml/kg</td>
</tr>
<tr>
<td>Group 2</td>
<td>Quinine + Ibuprofen</td>
<td>60-100 mg/kg</td>
</tr>
<tr>
<td>Group 3</td>
<td>Artesunate + Ibuprofen</td>
<td>30-100 mg/kg</td>
</tr>
<tr>
<td>Group 4</td>
<td>Quinine + Artesunate + Ibuprofen</td>
<td>60-30-100 mg/kg</td>
</tr>
<tr>
<td>Group 5</td>
<td>Ibuprofen</td>
<td>100 mg/kg</td>
</tr>
</tbody>
</table>
3.5 Malaria Parasitized Animals

The mice were infected with malaria parasite *Plasmodium berghei* (strain NK65) a donor mouse obtained from the Department of Pharmacology and Therapeutics Ahmadu Bello University, Zaria. *P. berghei*-infected red blood cells were obtained from the tail vein of infected mouse and diluted with phosphate buffered saline (PBS) so that each 0.2 mL that was subsequently injected contained approximately 10^3 infected red cells (parasite) per kilogram of body weight. The infection of the recipient mice were initiated by needle passage of the parasite preparation from the donor to healthy test animals via the intraperitoneal route as described by David *et al.*, (2004) and Peter and Anatoli (1998). Fifth day after establishment of infection, drugs were administered once daily for seven days to all the groups per body weights (Table 3.1). Parasitaemia was checked on day 1 and day 7 of treatment following Geimsa staining of thin blood smear.

3.6 Glucose Level on Healthy Animals (Uninfected mice)

Another set of uninfected mice were grouped into four with each group containing 7 mice as shown on Table 3.2. They were grouped according to their body weights having an average of 23 g. The animals were fasted for 16 hours but given access to water *ad libitum*. Their blood glucose level was taken using an Accu-check glucometer with compatible strips on day 0, day 1 and day 7 post treatment.

3.6.1 Oral Glucose Tolerance Test

Oral glucose tolerance test (OGTT) was performed on the animals on day 7 post treatment as described by Syiem *et al.*, (2002). Although OGTT is a test performed on
diabetogenic animals to see the effect of treatment on blood sugar level, it was also carried out in this study to see if it will have effect on the blood glucose level of the animals. The animals were weighed and their basal blood glucose level was taken. They were administered with drugs according to Table 3.2, after an hour glucose solution (2 g/kg) was administered to each mouse and the blood glucose level was taken at 30 minutes, 60 minutes and 120 minutes. On the 8th day the animals were euthanized using chloroform to anaesthetize the animals. The kidney, spleen, liver and brain were removed, weighed and recorded. The blood samples were collected for biochemical and haematological analysis.

3.7 Biochemical Parameters Analysis

The animals were euthanized with chloroform as anaesthesia and blood samples from the jugular vein was collected in sterile labeled plain sample tubes and centrifuged at 3000 rpm for 10 min to obtain a clear serum using a centrifuge (Edewor et al., 2010). The liver of each animal was weighed and homogenized using mortar and pestle in phosphate buffered saline pH 7.2 and for each gram of the liver, 10 ml of the buffer was used. The homogenized samples were centrifuged at 5000 rpm for 30 minutes and the clear homogenates were collected and used for antioxidant and liver function test analysis. Liver homogenates were used for analysis due to insufficient blood sample for liver function test.
3.7.1 Liver Function Tests

Aspartate amino transferase, Alanine amino transferase and Alkaline phosphatase were determined using colorimetric kits of analytical standard grade.

3.7.1.1 Aspartate Amino Transferase (Glutamic-Pyruvic Transaminase, GPT)

In this reaction, L-Alanine and α-ketoglutarate react in the presence of GPT in the sample to yield pyruvate and L-glutamate. Pyruvate is reduced by lactate dehydrogenase to yield lactate with oxidation of NADH to NAD. The reaction was monitored by measurement of the absorbance of NADH at 340 nm. The rate of reduction in absorbance is proportional to GPT activity in the sample.

One milliliter of the working reagent (Reckon Diagnostics) was mixed immediately with 0.05 ml of the sample and the first absorbance of test was read exactly at 1 minute and thereafter at 30, 60, 90 and 120 secs at 340 nm. The mean change in absorbance per minute was determined (ΔA/min) and test results calculated thus:

\[
\text{GPT activity (IU/L)} = \Delta A/\text{min.} \times F
\]

Where \(F = 3376 \) (based on the millimolar extinction coefficient of NADH at 340 nm)

3.7.1.2 Aspartate Amino Transferase (Glutamic Oxaloacetic Transaminase, GOT)

In this reaction, L-Aspartate and α-Ketoglutarate react in the presence of GOT in the sample to yield oxaloacetate and L-glutamate. The oxaloacetate is reduced by malate dehydrogenase (MDH) to yield L-malate with the oxidation of NADH to NAD. The reaction was monitored by measurement of the decrease in absorbance of NADH at 340 nm. The rate of deduction in absorbance is proportional to GOT activity in the sample.
One milliliter of the working reagent (Reckon Diagnostics) was mixed immediately with 0.05 ml of the sample and the first absorbance of test was read exactly at 1 minute and thereafter at 30, 60, 90 and 120 secs at 340 nm. The mean change in absorbance per minute was determined (ΔA/min) and test results calculated thus:

\[
\text{GOT activity (IU/L)} = \Delta A/\text{min.} \times F. \text{ Where } F = 3376 \text{ (based on the millimolar extinction coefficient of NADH at 340 nm)}
\]

3.7.2 Oxidative Stress Biomarkers

Thiobarbituric acid reactive substances (TBARS) assay. The thiobarbituric acid (TBA) assay was used to assess lipid peroxidation using the method of Bar-Or et al., (2001), with a few modifications. All fatty acids were initially prepared as stock solutions in acetone to facilitate solvation. In the final reaction mixture, individual fatty acid concentrations ranged from 0-0.2 mM, while the acetone concentration was 0.5% (v/v).

Samples were pre-incubated for 15 min with a fatty acid or 0.5% acetone (v/v; positive control) and 0.01 mM CuCl₂ in 20 mM phosphate buffer (pH 7.4). The reaction was started by the addition of 0.5 mM ascorbate and 1.9 mM deoxyribose, and incubated for 1 hour at 37°C. 10 g/L TBA in 50 mM NaOH and concentrated acetic acid were added to the incubation mixture, boiled in water for 15 min and the thiobarbituric acid-reactive species (TBARS) quantified by spectrophotometry at 532 nm. The TBARS in the fatty acid containing samples were compared with the positive controls containing 0.5% (v/v) acetone.
Oxidative stress enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were measured using Northwest life science specialties activity assay kit. The samples were prepared according to the manufacturers guidelines and read spectrophotometrically at 240 nm after every 2 seconds for 15 seconds for catalase; 560 nm every 10 seconds for at least 5 minutes for SOD and 340 nm for every 30 seconds for 5 minutes for GPX.

3.8 Haematological Parameters Analysis

From each animal, blood samples were collected from the jugular vein into clean labeled EDTA sample tubes. Packed cell volume, red blood cell, white blood cell, platelet count, haemoglobin, mean cell volume, mean corpuscular haemoglobin concentration and mean corpuscular haemoglobin were determined using the Sysmex Automated Haematology Analyzer KX-21N, Sysmex Corporation, Kobe-Japan at Ahmadu Bello University Teaching Hospital, Shika and values were taken.

3.9 Organ Body Weight Ratio

The kidney, spleen and the liver were removed from the animals in all groups on the eight day of the experiment after being sacrificed and weighed. The relative organ body weights were determined thus, \[
\frac{\text{weight of organ (g)}}{\text{weight of animal on sacrifice day (g)}} \times 100
\]

3.10 Analgesic Study: Acetic Acid Induced Abdominal Constrictions

Writhing was induced in mice as described by Koster et al., 1959. The mice received drugs (orally) according to their body weight in their respective groups. Group 1 was
administered Normal saline (10 ml/kg), Group 2 was administered Quinine (60 mg/kg), Group 3 was administered Artesunate (30 mg/kg) and Group 4 was administered Quinine and Artesunate (60 and 30 mg/kg). Thirty minutes after, the mice received 0.6 % acetic acid (10 ml/kg, intraperitoneally) to induce pain (Kumar et al., 2012). The acetic acid injected animals were placed in an observational box (Hong et al., 2011). Five minutes after acetic acid injection, the number of abdominal writhes by each mouse were counted for 20 minutes and recorded. Percentage Pain Inhibition (%) was determined thus,

\[
\frac{\text{Mean number of writhes (normal control)} - \text{Mean number of writhes (test)}}{\text{Mean number of writhes (normal control)}} \times 100
\]

3.11 Anti-Pyretic Study: Brewer’s Yeast Induced Pyrexia Model

Antipyretic activity was evaluated using Brewer’s yeast-induced pyrexia in rats as described by Kumar et al., 2009. Fever was induced by administering 20 ml/kg of 20% aqueous suspension of Brewer’s yeast in normal saline subcutaneously. Nineteen hours after the injection of the yeast, the rectal temperature was taken and immediately administration of the drugs according to the body weights of the animals was carried out. The rectal temperature was determined using a digital thermometer at 1, 2, 3, and 4 hours post treatment. Drugs were administered according to table 3.1.

3.12 Statistical Analysis

Results were expressed as mean ± standard error of mean. One way analysis of variance (ANOVA) followed by homogeneity of variances and a suitable post hoc test was chosen, repeated measure ANOVA and Bonferroni Post Hoc test were used depending on data.
type to analyze and compare the results at a 95% confidence level using SPSS version 20 and Microsoft excel.
CHAPTER FOUR

RESULTS

4.1 The Effect of Quinine, Artesunate, Quinine-Artesunate Co-administration and their Separate Therapy on Blood Glucose Level in Swiss Albino Mice

Quinine-Artesunate co-administration on Fasting Blood Glucose levels in healthy animals did not show significant difference within the groups when compared across the days (Table 4.1). A statistical insignificant reduction in Blood Glucose level was seen in quinine group on days 0, 1 and 7 compared to the normal control group. Quinine-Artesunate treated group showed insignificant reduction when compared to the control group on the 7th day.

Table 4.1: The Effect of Quinine-Artesunate Co-administration on Fasting Blood Glucose Level in Swiss Albino Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values±SEM of Fasting Blood Glucose Level (mg/dL)</th>
<th>FBS Day 0</th>
<th>% Reduction</th>
<th>FBS Day 1</th>
<th>% Reduction</th>
<th>FBS Day 7</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>99.29 ±5.59</td>
<td>0</td>
<td>0</td>
<td>116.43</td>
<td>0</td>
<td>100.71</td>
<td>0</td>
</tr>
<tr>
<td>Artesunate</td>
<td>118.71±12.37</td>
<td>-19.56</td>
<td>86.14±11.09</td>
<td>95.00</td>
<td>18.41</td>
<td>96.14</td>
<td>4.54</td>
</tr>
<tr>
<td>Quinine+ Artesunate</td>
<td>96.60 ±9.64</td>
<td>2.71</td>
<td>104.60±5.15</td>
<td>10.16</td>
<td>83.00</td>
<td>17.59</td>
<td></td>
</tr>
</tbody>
</table>

N=7, FBS: Fasting blood sugar, SEM: standard error of mean
Repeated measures ANOVA and Bonferroni Post Hoc test
4.2 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oral Glucose Tolerance Test in Swiss Albino Mice

Results were compared between and within the groups across the times as well as between treatment groups. Quinine-Artesunate co-administration did not show significant difference across the time. Results showed significant increase \((P<0.01)\) in blood glucose levels between time 0 and 30 minutes in all the groups except the Quinine-Artesunate group. In the normal control group, a significant decrease was seen when the time 30 minutes was compared to time 60 minutes \((P<0.05)\) and 120 minutes \((P<0.01)\). A significant decrease was seen when time 60 minutes was compared to time 120 minutes \((P<0.05)\). In Quinine group, a significant decrease was found when time 30 minutes was compared 60 minutes \((P<0.05)\) and 120 minutes \((P<0.001)\). In Artesunate group, a significant decrease was found when time 30 minutes was compared to time 60 minutes \((P<0.05)\) and when time 60 minutes was compared to time 120 minutes \((P<0.05)\) (Table 4.2). The results did not show any significant difference between the groups.
Table 4.2: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oral Glucose Tolerance Test of Swiss Albino Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Basal</th>
<th>30 min</th>
<th>% Elevation</th>
<th>60 min</th>
<th>% Reduction</th>
<th>120 min</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>100.71 ±11.34***</td>
<td>319.14 ±35.36**</td>
<td>216.89</td>
<td>164.14 ±17.12**</td>
<td>48.57</td>
<td>85.14 ±4.75***</td>
<td>48.13</td>
</tr>
<tr>
<td>Quinine</td>
<td>86.57 ±11.09***</td>
<td>228.43 ±17.74**</td>
<td>164.00</td>
<td>138.43 ±17.81**</td>
<td>39.39</td>
<td>90.43 ±9.55***</td>
<td>34.67</td>
</tr>
<tr>
<td>Artesunate</td>
<td>96.14 ±13.26*</td>
<td>274.71 ±43.51*</td>
<td>185.73</td>
<td>152.29 ±12.15</td>
<td>44.56</td>
<td>90.57 ±9.24##a</td>
<td>40.53</td>
</tr>
<tr>
<td>Quinine+ Artesunate</td>
<td>93.00 ±13.51</td>
<td>236.33 ±51.61</td>
<td>154.12</td>
<td>118.50 ±21.63</td>
<td>49.86</td>
<td>87.33 ±10.69</td>
<td>26.30</td>
</tr>
</tbody>
</table>

N=7, Repeated measures ANOVA and Bonferroni Post Hoc test, SEM: standard error of mean; *=P<0.05, **=P<0.01, vs. time 0; #=P<0.05, ##=P<0.01, ###=P<0.001 vs. time 30; a = P<0.05 vs. time 60
4.3 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test of Albino Mice

A significant increase in AST level of Quinine group compared to Artesunate group was found ($P<0.05$). There was no significant difference when the co-administration was compared to the normal control, quinine and artesunate groups. There was an insignificant increase in the ALP of quinine compared to the control and other treated groups. (Table 4.3)

Table 4.3: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test in Swiss albino mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Liver Biomarkers (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALT</td>
</tr>
<tr>
<td>Control</td>
<td>1596.43 ± 78.91</td>
</tr>
<tr>
<td>Quinine</td>
<td>1591.29 ± 61.66</td>
</tr>
<tr>
<td>Artesunate</td>
<td>1563.43 ± 68.10</td>
</tr>
<tr>
<td>Quinine + Artesunate</td>
<td>1505.50 ± 59.15</td>
</tr>
</tbody>
</table>

N=7, ALT, Alanine amino transferase; ALP, Alkaline phosphatase; AST, Aspartate amino transferase; *=P<0.05 vs. Artesunate group; ANOVA and Bonferroni Post Hoc test
4.4 The Effect of Quinine-Artésunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers on Swiss Albino Mice

Oxidative stress biomarkers of the Quinine-Artésunate co-administration and other groups did not show any significant difference when compared between the groups. There was an insignificant increase in SOD and CAT of Artésunate group compared to other groups (Table 4.4).

Table 4.4: The Effect of Quinine-Artésunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers Test in Swiss Albino Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Oxidative Stress Biomarkers (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOD</td>
</tr>
<tr>
<td>Control</td>
<td>1.88 ±0.27</td>
</tr>
<tr>
<td>Quinine</td>
<td>1.94 ±0.18</td>
</tr>
<tr>
<td>Artésunate</td>
<td>2.09 ±0.14</td>
</tr>
<tr>
<td>Quinine+Artésunate</td>
<td>1.57 ±0.11</td>
</tr>
</tbody>
</table>

N=7, MDA, Malondialdehyde; SOD, Superoxide dismutase; GPX, Glutathione peroxidase; CAT, Catalase; SEM: standard error of mean; ANOVA and Bonferroni Post Hoc test
4.5 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Hematological Parameters in Swiss Albino Mice

A significant increase was seen in the Mean Corpuscular Haemoglobin Concentration level of Artesunate group ($P<0.05$) when compared to the normal control group. There was no significant difference when the co-administration was compared to the normal control, quinine and artesunate groups (Table 4.5).

Table 4.5: The effect of Quinine-Artesunate Co-administration and their Separate Therapy on Haematological Indices in Swiss albino mice

<table>
<thead>
<tr>
<th>Hematological Indices</th>
<th>Normal Control</th>
<th>Quinine</th>
<th>Artesunate</th>
<th>Quinine-Artesunate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (10^{12}/L)</td>
<td>9.05 ±0.29</td>
<td>8.98 ±0.56</td>
<td>8.68 ±0.57</td>
<td>8.02 ±0.49</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>53.39 ±1.63</td>
<td>51.41 ±3.29</td>
<td>45.60 ±3.06</td>
<td>45.13 ±2.52</td>
</tr>
<tr>
<td>HGB (g/dL)</td>
<td>15.16 ±0.46</td>
<td>14.84 ±0.86</td>
<td>14.14 ±0.95</td>
<td>13.82 ±0.75</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>16.76 ±0.37</td>
<td>16.79 ±.25</td>
<td>16.30 ±0.31</td>
<td>17.25 ±0.25</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>28.69 ±0.45</td>
<td>29.30 ±0.58</td>
<td>31.08 ±0.69*</td>
<td>30.65 ±0.26</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>58.56 ±1.78</td>
<td>57.49 ±1.74</td>
<td>52.60 ±1.34</td>
<td>56.40 ±0.88</td>
</tr>
<tr>
<td>WBC (10^9/L)</td>
<td>5.74 ±1.03</td>
<td>5.93 ±0.97</td>
<td>7.62 ±1.49</td>
<td>8.75 ±2.50</td>
</tr>
<tr>
<td>PLT (10^9/L)</td>
<td>598.14 ±103.76</td>
<td>572.00 ±82.63</td>
<td>675.20 ±65.52</td>
<td>436.17 ±105.61</td>
</tr>
</tbody>
</table>

N=7, RBC, Red blood cell; PCV, Packed cell volume; HGB, Haemoglobin; MCH, Mean corpuscular haemoglobin; MCHC, Mean corpuscular haemoglobin concentration; MCV, Mean corpuscular volume; WBC, White blood cell; PLT, Platelet count. *= significance at $P<0.05$ compared with normal control group using Bonferroni Post Hoc test and ANOVA.
4.6 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight in Swiss Albino Mice

The results did not show any significant difference between the groups (Table 4.6).

Table 4.6: The effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight in Swiss albino mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Relative Organ Body Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kidney</td>
</tr>
<tr>
<td>Control</td>
<td>1.45 ±0.08</td>
</tr>
<tr>
<td>Quinine</td>
<td>1.31 ±0.08</td>
</tr>
<tr>
<td>Artesunate</td>
<td>1.45 ±0.09</td>
</tr>
<tr>
<td>Quinine+Artesunate</td>
<td>1.27 ±0.08</td>
</tr>
</tbody>
</table>

N=7; SEM: standard error of mean
ANOVA and Bonferroni Post Hoc t-test
4.7 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Random Blood Glucose Level in *P. berghei* Infected Mice

The results compared across each group for differences in glucose level on the days of treatment did not show any significant difference in the Random Blood Glucose level of the groups between day 1, day 5 and day 6. A statistically insignificant increase in RBS day 1 in infected group compared to the normal control group and a significant increase when compared to Artesunate group (*P*<0.05). There was no significant difference between the groups on day 5 and day 6 (Table 4.7).

Table 4.7: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Random Blood Glucose Level in *P. berghei* Infected Mice

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Mean Values (mg/dL)</th>
<th>±SEM of Glucose Level</th>
<th>% Reduction</th>
<th>RBS Day 6</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RBS Day 1</td>
<td>RBS Day 5</td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Control</td>
<td>110.80 ±16.24</td>
<td>123.00 ±3.69</td>
<td>-11.01</td>
<td>111.40 ±4.47</td>
<td>9.43</td>
</tr>
<tr>
<td>Infected control</td>
<td>179.66 ±6.33*</td>
<td>150.50 ±16.50</td>
<td>16.23</td>
<td>142.00 ±22.00</td>
<td>5.65</td>
</tr>
<tr>
<td>Quinine</td>
<td>126.40 ±19.93</td>
<td>106.20 ±9.86</td>
<td>15.98</td>
<td>101.40 ±9.47</td>
<td>4.52</td>
</tr>
<tr>
<td>Artesunate</td>
<td>124.20 ±7.20</td>
<td>109.20 ±6.48</td>
<td>12.08</td>
<td>100.60 ±8.08</td>
<td>7.88</td>
</tr>
<tr>
<td>Quinine + Artesunate</td>
<td>138.50 ±10.53</td>
<td>126.25 ±7.95</td>
<td>8.84</td>
<td>126.50 ±7.03</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

= P<0.05 compared to Artesunate; N=5, SEM=standard error of mean, RBS, Random Blood Sugar; repeated measures ANOVA and Bonferroni
4.8 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Fasting Blood Glucose Level in *P. berghei* infected mice

Glucose levels in each group were compared across the days and between the groups. A significant decrease ($P<0.05$) in the blood glucose level of quinine group alone was found on the 7th day of treatment compared to the 4th day. There was no significant difference in the blood glucose levels across the days of other groups. On the 2nd day, a significant increase in FBS was found in infected control compared to the normal control and artesunate groups ($P<0.05$), a significant increase in FBS was also found in the quinine group when compared to the normal control and Artesunate groups. There was a significant increase in FBS on the 4th day of quinine and quinine-arteresunate groups compared to the normal control group ($P<0.05$) and a significant decrease when Artesunate was compared to the normal control, infected control and quinine groups on the 7th day ($P<0.05$) (Table 4.8).

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Glucose Level (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FBS Day 2</td>
</tr>
<tr>
<td>Normal control</td>
<td>90.00 ±9.15</td>
</tr>
<tr>
<td>Infected control</td>
<td>147.00 ±15.18$^#$</td>
</tr>
<tr>
<td>Quinine</td>
<td>138.60 ±9.91$^#$</td>
</tr>
<tr>
<td>Artesunate</td>
<td>92.80 ±7.05</td>
</tr>
<tr>
<td>Quinine+ Artesunate</td>
<td>109.75 ±7.58</td>
</tr>
</tbody>
</table>

* N=5, FBS: Fasting Blood Sugar; SEM: standard error of mean $^#=$ Significant at $P<0.05$ compared to Normal control and Artesunate groups; $^*=$ $P<0.05$ compared to Day 4, $^a=$ $P<0.05$ compared to Normal control, $^c=$ $P<0.05$ compared to Artesunate group using repeated measures ANOVA and Bonferroni Post Hoc test
4.9 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test in *Plasmodium berghei* Infected Mice

A significant increase (*P*<0.01) was found in the Alanine amino transferase (ALT) levels of quinine group compared to the normal control group. However, the study showed insignificant increases in the ALT levels when the normal control group was compared with the infected control, Artesunate and Quinine-Artesunate groups. An insignificant increase in the Alkaline phosphatase (ALP) of the Quinine, Artesunate and Quinine-Artesunate co-administration group was found when compared to the normal control group. No significant difference was observed in Aspartate amino transferase (AST) and Alkaline phosphatase (ALP) level when compared between the groups, although there was an insignificant increase in ALP levels of quinine, artesunate and quinine-artesunate groups compared to the normal and infected control groups (Table 4.9).

Table 4.9: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Liver Function Test in *P. berghei* Infected Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Liver Biomarkers (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALT</td>
</tr>
<tr>
<td>Normal control</td>
<td></td>
</tr>
<tr>
<td>Infected control</td>
<td>1630.00 ±18.00</td>
</tr>
<tr>
<td>Quinine</td>
<td>1652.80 ±23.96*</td>
</tr>
<tr>
<td>Artesunate</td>
<td>1539.20 ±66.77</td>
</tr>
<tr>
<td>Quinine+ Artesunate</td>
<td>1440.00 ±60.43</td>
</tr>
</tbody>
</table>

N=5, ALT, Alanine amino transferase; ALP, Alkaline phosphatase; AST, Aspartate amino transferase; SEM: standard error of mean; * = Significant at *P*<0.01 compared to normal control group using ANOVA and Bonferroni Post Hoc test
4.10 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers in *P. berghei* Infected Mice

A significant increase in Malondialdehyde (MDA) concentration level was observed in infected control (*P*<0.05), Quinine (*P*<0.01), Artesunate (*P*<0.01) and Quinine-Artesunate co-administration (*P*<0.05) groups when compared to the normal control group. The study showed a significant decrease in Superoxide dismutase level of infected control (*P*<0.01), Quinine (*P*<0.001), Artesunate (*P*<0.0001) and Quinine-Artesunate co-administration (*P*<0.0001) groups when compared to the normal control group and a significant decrease was found when Quinine-Artesunate co-administration group was compared to quinine group (*P*<0.05). A significant decrease was found in the glutathione peroxidase levels of Quinine-Artesunate co-administration (*P*<0.01), Quinine (*P*<0.01) and Artesunate (*P*<0.0001) groups when compared to the normal control group. A significant decrease was also found in the catalase level of Quinine-Artesunate (*P*<0.01), quinine (*P*<0.0001), artesunate (*P*<0.0001) and infected control (*P*<0.05) groups compared to the normal control group (4.10).
Table 4.10: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Oxidative Stress Biomarkers Test in *P. berghei* Infected Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Oxidative Stress Biomarkers (IU/L)</th>
<th>MDA</th>
<th>SOD</th>
<th>GPX</th>
<th>CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td></td>
<td>1.14 ±0.08</td>
<td>2.46 ±0.05##</td>
<td>61.40 ±1.17</td>
<td>54.20 ±1.07</td>
</tr>
<tr>
<td>Infected control</td>
<td></td>
<td>1.65 ±0.05*</td>
<td>1.85 ±0.15**</td>
<td>55.00 ±1.00</td>
<td>46.00 ±2.00*</td>
</tr>
<tr>
<td>Quinine</td>
<td></td>
<td>1.62 ±0.07**</td>
<td>1.96 ±0.07###</td>
<td>53.00 ±1.92**</td>
<td>43.60 ±1.29****</td>
</tr>
<tr>
<td>Artesunate</td>
<td></td>
<td>1.68 ±0.07**</td>
<td>1.70 ±0.07####</td>
<td>49.00 ±1.52****</td>
<td>44.40 ±1.23****</td>
</tr>
<tr>
<td>Quinine+Artesunate</td>
<td></td>
<td>1.60 ±0.11*</td>
<td>1.63 ±0.06#####</td>
<td>52.00 ±0.71**</td>
<td>45.50 ±1.32**</td>
</tr>
</tbody>
</table>

N=5, MDA, Malondialdehyde; SOD, Superoxide dismutase; GPX, Glutathione peroxidase; CAT, Catalase. Significant at *= P<0.05, **=P<0.01, ***=P<0.001 and ****=P<0.0001 when compared with normal control group, #= P<0.05 and ##= P<0.01 compared with Quinine-Artesunate group using ANOVA and Bonferroni Post Hoc test.
4.11 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight of *P. berghei* Infected Mice

This study showed a significant increase in the liver-body weight ratio of infected control ($P<0.0001$), Quinine ($P<0.0001$) and Artesunate ($P<0.05$) when compared with that of the normal control group, but the increase for the co-administration group was not significant when compared with the normal control group. A significant decrease ($P<0.0001$) was seen in the normal control, quinine, artesunate and Quinine-Artesunate groups when compared with the infected control group. The study did not show any significant difference in the liver-body weight ratio of the co-administration group when compared to the normal control group. No statistical difference was seen in the relative kidney-body weight when compared between the groups, but a significant increase was seen in the relative spleen-body weight of the infected control ($P<0.01$) and quinine ($P<0.0001$) groups when compared to normal control group. A significant increase was found when quinine group was compared to normal control ($P<0.0001$), artesunate ($P<0.05$) and Quinine-Artesunate ($P<0.01$) groups (Table 4.11).
Table 4.11: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Relative Organ Body Weight of *P. berghei* Infected Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Values ± SEM of Organ Body Weight Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td>Normal control</td>
<td>4.31 ±0.22*#</td>
</tr>
<tr>
<td>Infected control</td>
<td>10.42 ±0.29***</td>
</tr>
<tr>
<td>Quinine</td>
<td>6.81 ±0.41***#</td>
</tr>
<tr>
<td>Artesunate</td>
<td>5.83 ±0.37***#</td>
</tr>
<tr>
<td>Quinine + Artesunate</td>
<td>5.63 ±0.23***#</td>
</tr>
</tbody>
</table>

N=5, SEM= standard error of mean, Significant at *=P<0.05, **=P<0.01 and *** =P<0.0001 compared with normal control group, *=P<0.0001 compared with infected control, a=P<0.05, b=P<0.01 and c=P<0.0001 compared with quinine group using ANOVA and Bonferroni Post Hoc test.
4.12 The Effect of Quinine-Artesunate Co-administration on Acetic Acid Induced Writhes in Mice

A significant decrease in the number of writhes of Artesunate + Ibuprofen group was seen when compared to the normal Ibuprofen group ($P<0.05$). Quinine + Ibuprofen, Quinine-Artesunate + Ibuprofen co-administration and Ibuprofen alone groups showed insignificant decrease in number of writhes when compared to the normal control group. The study did not show any significant difference when the groups were compared to the normal control group.

![Graph showing mean number of writhes across different treatment groups](image)

Figure 4.1: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Acetic Acid Induced Writhes in Mice

N=7, * = significant at $P<0.05$; using ANOVA and Bonferroni Post Hoc test

Q= Quinine, A= Artesunate, I= Ibuprofen
4.13 The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Brewer’s Yeast Induced Pyrexia in Rats

In normal control group, no significant difference was observed across the time. In Quinine + Ibuprofen group, a significant decrease in temperature was found at the 4th hour post treatment compared to the 0 hour (P<0.01) and 2nd hour (P<0.05). A significant increase in pyrexia was observed in the Artesunate + Ibuprofen group at the 0 hour compared to the basal temperature (P<0.05). Quinine-Artesunate + Ibuprofen group did not show any significant difference across the time. Ibuprofen group showed significant decrease in temperature when the 0 hour was compared to the 2nd hour (P<0.001) and 4th hour (P<0.05) and a significant decrease when 2nd hour was compared with the 3rd hour. The result showed significant decrease in pyrexia after 2nd hour in Artesunate + Ibuprofen, Quinine-Artesunate + Ibuprofen and Ibuprofen groups (P<0.01) when compared to the normal control group. At the 4th hour, the result showed significant decrease in pyrexia in Artesunate + Ibuprofen (P<0.01), Quinine + Ibuprofen (P<0.05) Quinine-Artesunate + Ibuprofen (P<0.05) and Ibuprofen (P<0.05) groups compared to the normal control group (Table 4.12).
Table 4.12: The Effect of Quinine-Artesunate Co-administration and their Separate Therapy on Brewer’s Yeast Induced Pyrexia in Wistar Albino Rats

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Mean Values ±SEM of Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal Temp</td>
</tr>
<tr>
<td>Normal Control</td>
<td>36.63±0.36</td>
</tr>
<tr>
<td>Quinine+Ibuprofen</td>
<td>36.42±0.32</td>
</tr>
<tr>
<td>Artesunate+Ibuprofen</td>
<td>36.18±0.54</td>
</tr>
<tr>
<td>Quinine-Artesunate+Ibuprofen</td>
<td>36.75±0.27</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>36.85±0.23</td>
</tr>
</tbody>
</table>

N=6, TEMP: temperature; SEM: standard error of mean; *=P<0.05, **=P<0.01 vs. basal temperature; #*=P<0.05, ##*=P<0.001 vs. 0 hour; *=P<0.05 vs. 2nd hour Repeated measures ANOVA and Bonferroni Post Hoc test
Artemisinin-based combination therapy is the most important treatment in the chemotherapy of malaria. The mechanism of action of Artemisinin derivatives depends on the alkylation of plasmodium-specific proteins that prevents the hemozoin production and consequently causes the release of free iron that is toxic to the parasite (Souza et al., 2012). This study evaluated the effect of Quinine-Artesunate co-administration on blood glucose concentration as well as determined the recovery in altered biochemical variables, oxidative stress and haematological variables. This study also investigated the action of Quinine-Artesunate co-administration during concurrent administration with Ibuprofen when administered for the treatment of pain and pyrexia.

Studies have shown the efficacy of concurrent administration of intravenous quinine and Artesunate in chemotherapy of malaria (Bartoloni, 2010). The fasting blood glucose levels did not show any significant difference across the days within the groups. In the oral glucose tolerance test, Quinine group showed more significant decrease ($P < 0.001$) at time 120 minute compared to time 30 minute than other groups. A slight significant decrease ($P < 0.05$) in blood glucose level was found in artesunate group at time 120 minute compared to time 30 minute. Quinine-Artesunate co-administration group did not show any significant difference in blood glucose level across the time. The co-administration group did not show any effect on glucose reduction compared to the quinine and artesunate group. In $P. berghei$ infected animals, no significant difference in
Random blood glucose levels across the groups was seen in all the groups, although a significant increase in the Random blood glucose level of infected control ($P<0.05$) was found when compared to the normal control group. This could be as a result of the insulin resistance in uncomplicated malaria of which the basal glucose is usually increased (Binh et al., 1997). In fasting blood glucose level, only quinine group showed a significant reduction ($P<0.05$) in blood glucose levels between day 4 and day 7 of drug administration. However, Quinine-Artesunate co-administration group did not show significant decrease in blood glucose level across the days of treatment when compared to the infected control group and groups treated with quinine and artesunate singly. This suggests that the co-administration reduced the risk of hypoglycaemia supposedly caused by the parasite or individual treatment groups.

The changes in the liver enzyme system have been used clinically in evaluating the toxicity of any extraneous substance to the living system. This is so, because, any derangement of biochemical processes in experimental animals due to the presence of a xenobiotic (drug) would reflect increase or decrease in the activity of such enzymes including AST, ALT and ALP used as indicators of liver injury (Edet et al., 2011). In this study, the ability of quinine and Artesunate co-administration on reduction of hepatotoxicity as compared to the control groups and the groups administered quinine and artesunate alone groups were investigated. In healthy animals, a significant increase in AST levels of group was found in quinine group compared to the Artesunate group. A significant increase was observed in the ALT level of quinine group ($P<0.01$) compared to the normal control group. This is in line with the documented report of Quinine
induced hepatotoxicity following ingestion of first dose (Farver and Lavin, 1999). The ALT level of the Quinine-Artesunate co-administration group was not significantly higher than the normal control group signifying its lesser damage to the liver compared to the other infected groups. The co-administration did not cause increase in ALT concentration (liver damage) that may be caused by quinine and the malaria parasite. There was no significant difference in the ALP between the groups.

In line with the report of Erel et al, (2001), activities of antioxidant enzymes such as the superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) in animals with malaria were reduced while lipid peroxidation of platelets (by measuring MDA) were elevated. Oxidative stress biomarkers were investigated on healthy animals, this showed no significant difference between the groups. In parasitized animals, a significant increase in lipid peroxidation (MDA) was observed in all the treated groups when compared to the normal control group. This could be as a result of the treatment and not the parasite, since the infected control did not show significant decrease compared to the normal control group. A significant decrease was found in Quinine-Artesunate co-administration group in SOD when compared with quinine ($P<0.05$) and normal control ($P<0.01$) groups. Artesunate group showed significantly higher values ($P<0.0001$) of antioxidant enzymes (GPX and CAT) compared to the normal control group. This is in line with artesunate’s documented report of being associated with oxidative stress. Quinine group showed significant decrease in the antioxidant enzymes compared to the normal control group. No significant difference was seen when Quinine-Artesunate, Quinine and Artesunate groups were compared to the infected control group.
The co-administration showed a more reduced MDA values than the treated and infected control groups. This suggests that the co-administration did not induce lipid peroxidation (MDA) elevation and possesses potential effect on lipid peroxidation compared with the infected and other treated (individual drug) groups. The infected control group showed slightly significant decrease \((P<0.05) \) in antioxidant enzymes (SOD and CAT) levels compared to the normal control group, it did not show significant difference on the GPX levels compared to the normal control group. The decrease in antioxidant enzymes in treated groups may not be necessarily due to the malaria parasite alone since the infected control group has a lesser reduction.

Generally in toxicological studies, relative organ body weight changes are often associated with treatment related effects (Sellers *et al*., 2007). Liver weight elevation is associated with potent hepatic enzyme-inducing compounds, while changes in kidney weight are linked to renal toxicity, tubular hypertrophy and chronic progressive nephropathy (Sellers *et al*., 2007). In healthy animals, no significant difference was seen compared between groups. In parasitized animals, a significant decrease in the relative liver-body weight was observed in quinine, artesunate and Quinine-Artesunate groups when compared with the infected control group. This suggests that the treatments reduced the risk of liver toxicity caused by the parasite. A significant increase in the relative liver-body weight was observed in infected control, quinine and artesunate groups when compared with the normal control group. Malaria is usually involved in hepatosplenomegally i.e. enlargement of the liver and spleen, this could be the reason for increment in the weight of the liver of these groups infected with malaria. Although, with
treatment especially Quinine-Artesunate co-administration, there was no significant
decrease in the weight of the liver compared to the normal control group. The relative
organ body weight of the kidney does not show any significant difference when
compared between the groups. Although, insignificant increase was seen in infected
control, quinine and Artesunate groups compared to the normal control group. Quinine-
Artesunate co-administration showed the same mean value with the normal control group
suggesting that the co-administration group did not affect the kidney-body weight of the
animals. A significant increase was found in the relative organ-body weight of the spleen
of the infected control and quinine group compared to normal control group. The relative
body weight of the spleen of Quinine treated group was significantly increased compared
to normal control, artesunate and Quinine-Artesunate groups. However, Quinine-
Artesunate group did not show significant difference compared to normal control group.

It is important to assess the haematological parameters of experimental animals in order
to help in determining any deleterious effect of foreign compounds (e.g. drugs) on the
blood of the animals. In healthy animals, the effect of Quinine-Artesunate co-
administration on haematological parameters was investigated. Artesunate group showed
a significant increase ($P<0.05$) in the Mean Corpuscular Haemoglobin Concentration
(MCHC) level when compared with the normal control group. The MCHC is a calculated
mean value of the amount of haemoglobin in red blood cell. Its increase is usually seen in
lipemia, obese persons or infants. No significant difference was observed in other
haematological indices between the groups.
The acetic acid induced writhes method, also called the abdominal constriction response, is a procedure sensitive to local peripheral receptors used to evaluate peripherally acting analgesics. It is associated with prostanoids in general, such as increase levels of PGE$_2$ and PGF$_{2a}$ in peritoneal fluids; and lipoxygenase products (Koster et al., 1959; Pateh et al., 2011).

The data presented here showed that Artesunate concurrently administered with ibuprofen showed a significant decrease ($P<0.05$) in the number of writhes when compared with Ibuprofen group. This is in agreement with the report of Mannikoth et al. (2012) that documented the analgesic effect of Artesunate. Quinine-Artesunate co-administration concurrently administered with Ibuprofen showed an insignificant decrease in the number of writhes in the animals compared to Ibuprofen and Normal control groups. There was also an insignificant decrease in the number of writhes of quinine + Ibuprofen and Ibuprofen groups compared to the normal control group.

Fever is an elevation of core body temperature above normal. A normal adult oral temperature is 37°C, above 38°C is considered significant. Febrile response (fever) is a complex physiologic reaction to disease involving a cytokine-mediated rise in body temperature, generation of acute-phase reactants and activation of numerous physiologic, endocrinologic and immunologic systems (Dalal and Zhukovsky, 2006). A significant decrease in pyrexia was found at the 2nd hour ($P<0.05$) and 4th hour ($P<0.001$) post treatment compared to the 0 hour in the quinine + Ibuprofen group. A significant reduction in pyrexia was seen in Ibuprofen group at the 2nd hour ($P<0.001$) compared to
the 0 hour. Quinine-Artesunate co-administration did not show significant reduction in pyrexia across the time.
CHAPTER SIX

SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.1 Summary
This study was carried out to determine the effect of Quinine-Artesunate co-administration on some biochemical parameters on both healthy and *Plasmodium berghei* infected albino mice. It was also to investigate the analgesic and anti pyretic effect of Ibuprofen when concurrently administered with Quinine and Artesunate. Both quinine and artemenate were co-administered in *Plasmodium berghei* infected and healthy albino mice for seven days and on the eighth day the animals were euthanized and blood samples, liver, spleen and kidney were collected for investigation. The results however, showed that the co-administration in many cases reduced the level of toxicity shown by either drug (quinine/artesunate) when administered singly. Hypoglyacemia and liver toxicity caused by quinine alone and the oxidative stress caused by artesunate were absent when both drugs were co-administered. The concurrent administration of quinine and artemenate with Ibuprofen produced little effect on pyrexia and algesia.

6.2 Conclusion
Quinine and Artesunate are both effective drugs used in the treatment of malaria. However, the percentage reduction in blood glucose concentration of the co-administration was lower than that of the Quinine group.
The co-administration showed a lower liver enzyme level concentration on the most important liver enzyme biomarker used in checking liver damage (Alanine transaminase, ALT). Thus, this suggests that the co-administration had a better or less adverse effect on the liver. The co-administration had a lower Malondialdehyde level compared to the infected control and individual drugs groups. This suggests that the co-administration has a better effect on lipid peroxidation than when the drugs are administered separately.

The co-administration does not show any significant difference in both analgesic and anti-pyretic activity when compared to the standard group administered drug, Ibuprofen. It can be concluded therefore that the co-administration concurrently treated with Ibuprofen does not affect the action of Ibuprofen.

Conclusively, quinine and artesunate are better co-administered than administering the individual drugs alone and can be concurrently administered with Ibuprofen.

6.3 **Recommendations**

1. Quinine or other anti-malarials should be co-administered with other Artemisinin derivatives to investigate the efficacy and adverse effects.
2. The effect of Quinine-Artesunate co-administration on renal indices (electrolytes, urea and creatinine) and histopathology of the organs should be investigated.
3. The concurrent administration of the co-administration and other analgesic agents and anti-diabetic drugs in case of patients with diabetes should also be
investigated since malaria also occurs in diabetic patients to investigate the interaction.
REFERENCES

APPENDIX

Appendix 1: Figure 4.1: The effect of Quinine-Artesunate Co-administration on Acetic Acid Induced Writhes in mice

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Mean Number of Abdominal Writhes (±SEM)</th>
<th>% INHIBITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Control</td>
<td>27.00 ±5.36</td>
<td>-</td>
</tr>
<tr>
<td>Quinine + Ibuprofen</td>
<td>13.83 ±4.73</td>
<td>49</td>
</tr>
<tr>
<td>Artesunate + Ibuprofen</td>
<td>4.17 ±1.97*</td>
<td>85</td>
</tr>
<tr>
<td>Quinine-Artesunate+Ibuprofen</td>
<td>7.00 ±5.38</td>
<td>74</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>13.67 ±1.82</td>
<td>49</td>
</tr>
</tbody>
</table>
Appendix 2: The effect of Quinine-Artesunate co-administration on Brewer’s yeast induced pyrexia in albino rats

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Basal Temp</th>
<th>Nineteenth Hour temp</th>
<th>Twentieth Hour Temp</th>
<th>Twenty First Hour Temp</th>
<th>Twenty Second Hour Temp</th>
<th>Twenty Third Hour Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qui-Ibu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art-Ibu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-A-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: Contents of pelletized growers feed

The pelletized growers feed used in feeding the animals contains the following ingredients:

Cereals/Grains, Vegetable Protein, Premix (Vitamins/Minerals), Essential amino acids, Salt, Antioxidant, Anti-toxins, Prebiotic, Enzymes

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>15%</td>
</tr>
<tr>
<td>Fat</td>
<td>7%</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>10%</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.0%</td>
</tr>
<tr>
<td>Available phosphorus</td>
<td>0.35%</td>
</tr>
<tr>
<td>Metabolisable energy</td>
<td>2550 Kcal/Kg</td>
</tr>
</tbody>
</table>