IMPACT OF NATIONAL DIRECTORATE OF EMPLOYMENT PROGRAMMES ON POVERTY ALLEVIATION IN GOMBE STATE

BY

BELLO FARIDA
P16SSEC8071.

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA
IN PARTIAL FUILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE DEGREE IN ECONOMICS

DEPARTMENT OF ECONOMICS,
FACULTY OF SOCIAL SCIENCE,
AHMADU BELLO UNIVERSITY,
ZARIA

SEPTEMBER, 2018
DECLARATION

I declare that the work in this thesis entitled ‘Impact of The National Directorate of Employment Programmes on Poverty Alleviation in Gombe State’ has been carried out by me in the Department of Economics. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this thesis was previously presented for another degree or diploma at this or any other institution.

___________________________________ ______________ _______________

Name of Student Signature Date
CERTIFICATION

This thesis entitled THE IMPACT OF NATIONAL DIRECTORATE OF EMPLOYMENT PROGRAMMES ON POVERTY ALLEVIATION IN GOMBE STATE by FARIDA BELLO meets the regulations governing the award of the degree of Master of Science (M.sc) in Economics of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.

Dr. A.R. Sanusi DATE
(Chairman Supervisory Committee)

Dr. I. Audu DATE
(Member Supervisory Committee)

Dr. A.R. Sanusi DATE
Head of Department

Prof. S. Z. Abubakar DATE
Dean, School of Postgraduate Studies.
DEDICATION

This research is dedicated to my two lovely children Zainab and Musa, who have been with me throughout my research journey.
ACKNOWLEDGEMENTS

My profound gratitude and appreciation goes to both my supervisors Dr. A.R. Sanusi and Dr. I. Audu for their unrelenting support and patience during the course of my research. I am sincerely grateful for the wealth of knowledge received and will continue to benefit from all that I have learnt from them.

I would also like to thank the Past Head of Economics Department, A.B.U. Zaria, Dr. S. Isah for her remarkable leadership, the P.G. Coordinator and all the lecturers and staff of the Department that worked hard to ensure the successful completion of our coursework and research. This research would also have not been possible without the inputs and encouragement from our Head of Department, Prof. J.W.D. Somasundara; my colleagues Mal. Nasiru, Mal. Abubakar, Mal. Haruna and all the staff of Economics Department, Gombe State University; that have relentlessly pushed me to work towards the successful completion of this study and for that, I am grateful.

I am eternally grateful to all members of my immediate and extended family that have in one way or the other, contributed with their prayers and moral support throughout my course of study. My husband, Abdullahi Musa Yola, my mother Haj. Hadiza, my aunt Haj. Sakina, my siblings and my In-laws the Musa Yola family have been my source of strength and I am grateful to them for their love and support.

Lastly, to all of my colleagues during and after coursework with whom we have gone through the rigorous studies and research together, all of whose names are too numerous to mention, I am grateful for your friendship and support throughout the years.
ABSTRACT

The severe nature of poverty in Nigeria has prompted the need for government to tackle this issue through programmes or projects aimed at poverty reduction in order to improve living conditions of the poor. This was predicted to be achievable through various programmes or projects aimed at financial empowerment, training on skills acquisition for the less educated, loans with minimal interest and provision of employment opportunities to reduce the incidence of poverty. Notable among such programmes or projects is the National Directorate of Employment. This study assesses the impact of the National Directorate of Employment programmes on Poverty Alleviation in Gombe State, as well as whether there is a significant change in the incomes and standard of living of its beneficiaries. A cross sectional data set was collected through multi-stage sampling technique from 400 beneficiaries in Gombe and Funakaye LGA in Gombe North Senatorial District; Akko and Yamaltu-Deba LGA in Gombe Central Senatorial District and Billiri and Kaltungo LGA in Gombe South Senatorial District in the state. Descriptive statistics and the Logistic regression model were applied in analyzing the data set. Findings from the descriptive statistics results shows that the right group of beneficiaries were targeted by the NDE, for the model respondent was discovered to be a person in need of assistance to gain a reasonable income, improve his/her living standards and move out of the poverty line of US$ 1 per day. The logistic regression results presented in Model 1 indicated that the VSD, SSE, REP and SPW programmes of the NDE did not have any significant impact on the poverty status of the beneficiaries. However, the SSE programme was statistically significant for the dependent variable income and showed a positive likelihood of increasing the incomes of the beneficiaries by 1.32 times. The VSD, REP and SPW were not statistically significant for income and did not have any impact. The SPW programme was statistically significant for standard of living and had a negative likelihood of improving the living standards of the beneficiaries by 0.58 times. The VSD, SSE and REP were not statistically significant and did not have any impact. A supplementary analysis for the sub-schemes of each programme (Model 2) produced highly similar results with that of Model 1. This study therefore, recommends that the NDE should re-structure their programmes towards the agricultural and informal sectors of the state, given that majority of its beneficiaries were farmers (36.1%) and traders (35%). In addition, more NDE training centers should be added in every part of the state to broaden the reach of the programmes and afford more indigenes of Gombe state the opportunity of benefiting from the income-generating activities of the NDE.
TABLE OF CONTENTS

TITLE PAGE... i
DECLARATION ... ii
CERTIFICATION ... iii
DEDICATION .. iv
ACKNOWLEDGEMENTS .. v
ABSTRACT ... vi
TABLE OF CONTENTS .. vii
LIST OF FIGURES ... xi
LIST OF TABLES .. xii
LIST OF APPENDICES .. xiii
CHAPTER ONE .. 1
 1.0 INTRODUCTION .. 1
 1.1 BACKGROUND OF THE STUDY ... 1
 1.2 STATEMENT OF THE PROBLEM ... 3
 1.3 RESEARCH QUESTIONS ... 6
 1.4 OBJECTIVES OF THE STUDY ... 7
 1.5 RESEARCH HYPOTHESES .. 7
 1.6 SCOPE AND LIMITATIONS OF THE STUDY ... 8
 1.7 SIGNIFICANCE OF THE STUDY ... 8
 1.8 OUTLINE OF CHAPTERS ... 9
CHAPTER TWO ... 11
 2.0 LITERATURE REVIEW .. 11
 2.1 INTRODUCTION .. 11
3.7 VALIDITY AND RELIABILITY OF THE INSTRUMENT ...48
3.8 ADMINISTRATION OF RESEARCH INSTRUMENT ..49
3.9 VARIABLES MEASUREMENT ...49
3.10 METHOD OF DATA ANALYSIS ..51
3.11 MODEL SPECIFICATION ..52
3.11.1 Model 1: NDE Programmes ...53
3.11.2 Model 2 (Type 1) Vocational Skills Development Programme (VSD):54
3.11.3 (Type 2) Small-Scale Enterprises (SSE): ..54
3.11.4 (Type 3) Rural Employment Programme (REP):55
3.11.5 (Type 4) Special Public Works (SPW): ..56
3.12 CONCEPTUAL FRAMEWORK AND MODEL ..57

CHAPTER FOUR ..60
4.0 DATA ANALYSIS, INTERPRETATION AND DISCUSSION OF RESULTS60
4.1 INTRODUCTION ..60
4.2 DATA ANALYSIS ...60
4.3 INTERPRETATION OF DESCRIPTIVE STATISTICS RESULTS60
4.3.1 Gender distribution of the Respondents ..61
4.3.2 Age of the Respondents ...62
4.3.3 Marital Status of the Respondents ...62
4.3.4 Household Head ...63
4.3.5 Household Size ...63
4.3.6 Educational Level ..63
4.3.7 Major Occupation ..64
4.4 INTERPRETATION OF REGRESSION ANALYSIS RESULTS64
4.4.1 Interpretation of Logistic Regression Results (Model 1):64
LIST OF FIGURES

Figure 3.1: The Wisconsin Logic Model -----------------------------------59
LIST OF TABLES

Table 2.5.1: Poverty Alleviation Programmes in Nigeria --------------------------27

Table 2.7.1: Summary of NDE Programmes/Schemes ---------------------------39

Table 3.1: Impact Assessment Table ---58

Table 4.2.1: Socio-economic Characteristics of Respondents ------------------61

Table 4.2.2: Regression one - NDE Programmes (Poverty Status) --------------65

Table 4.2.3: Regression one - NDE Programmes (Income) ----------------------66

Table 4.2.4: Regression one - NDE Programmes (Standard of Living) ----------67

Table 4.2.5: Regression one - NDE Programmes (Assets) ----------------------68

Table 4.2.6: Regression one - NDE Programmes (Consumption Expenditure) ----68

Table 4.2.7: Regression one - NDE Programmes (New/Expanded Enterprise) ----69

Table 4.2.8: Type 1(VSD) --70

Table 4.2.9: Type 1(SSE) --71

Table 4.2.10: Type 1(REP) ---72

Table 4.2.11: Type 1(SPW) ---73
LIST OF APPENDICES

Appendix I: Questionnaire ---86

Appendix II: SPSS output ---9
CHAPTER ONE

1.0 INTRODUCTION

1.1 BACKGROUND TO THE STUDY

Poverty reduction has become a prime focus of economic policy programmes and
development management. Hence, the need becomes particularly compelling in developing
countries where poverty is most dehumanizing (Obadan, 2001). One of the common views
among scholars (e.g. Ashton, 1984, Deleeck et al., 1992, etc.) is that “poverty” connotes
material and non-material deprivation and lack of control over resources to meet essential
needs. It has been defined as “a condition characterized by severe deprivation of basic human
needs, including food, safe drinking water, sanitation facilities, health, shelter, education and
information. It depends not only on income but also on access to services” (UN, 1995). Thus,
those living in poverty suffer a lack of sufficient income or live beneath an unacceptably low-
income level and due to limited resources, are unable to afford some essential needs.

The nature of poverty in Nigeria is severe and widespread despite attempts to reduce poverty
levels, which have not yielded much impact as evident from worsening conditions of the
poor. According to the World Bank Report (2012), Nigeria has had a good index of economic
growth, including a high rate of growth during the last decade (about 7.4%), a well-developed
economy and a large number of natural resources. However, Nigeria has one of the highest
incidences of poverty in the world. From the late 1970’s to the early 1980’s, the economy had
to contend with severe economic difficulties resulting from the oil shocks, world economic
recession, deteriorating terms of trade, debt overhang and macroeconomic imbalances.

Poverty incidence was recorded at 43% by the Federal Offices of Statistics (FOS) in 1985. It
fell to 42.7% in 1992 and thereafter jumped to 65.6% in 1996. By 2004, it reached 54.7%, but
this increased to 60.9% (or 99,284,512 Nigerians) in 2010 and in 2017, poverty rates stood at
about 85%. Among the geo-political zones, the Northwest region had average poverty rates at
71.4%, followed by the Northeast region, which had 69.1% and the North central region, which had 60.7%. Poverty is least dominant in the South-West (49.8%), South-South (55.5%), and South-East regions (59.5%).

In line with the above, structural reforms policies were undertaken in mid-1986 and the economy recovered slightly, while the number of the poor reduced. By 1992, based on the FOS report, poverty incidence declined to 34%. By the early 1990’s, the economy was again beset by high inflation, low protective activities and a return to economic stagnant position. The proportion of people living below poverty line rose sharply to 61% in 1997 and Nigeria ranked 54th in the Human Poverty Index (HPI) of the United Nations Development Programme (UNDP) and among the twenty poorest countries in the world (UNDP, 2001).

The Federal Government with the global convention tried to improve the worsening condition of the poor, by directing public expenditure towards poverty reduction programmes and projects to tackle the causal effects of poverty in the country. These programmes include Better Life for Rural Women Programme (BLP), Family Support programme (FSP), The Directorate of Food, Roads and Rural Infrastructure (DFRRI), National Directorate of Employment (NDE), Family Economic Advancement Programme (FEAP), National Agency for Mass Literacy (NAML) etc.

However, devotion of Nigerian resources to reduce poverty proved abortive over the years, which made government to initiate and launch Poverty Alleviation Programme (PAP) within a framework of the National Budget in 2000. The programme was designed to provide employment for 200,000 people and the sum of N10 billion was set aside for the purpose. The programme ran in every State of the country and it is said to have provided jobs for 214,367 people who were paid little amount of N3500 per month (Aliyu, 2002). In January 2001, the poverty alleviation programme was phased out and replaced with National Poverty
Eradication Programme (NAPEP), which had the responsibility for coordinating and monitoring the activities of the core poverty reduction agencies (Aliyu, 2002).

It is from this standpoint that this study will appraise the impact of the National Directorate of Employment, which has been in place for about 30 years, as one of the poverty alleviation programmes in Nigeria.

1.2 STATEMENT OF THE PROBLEM

Over the years, successive governments in Nigeria have attempted to reduce poverty among Nigerians through various sectoral reform interventions in agriculture, health care, transportation, housing and the financial sectors. Some multi-sectoral programmes were also introduced. These programmes include: The National Agricultural Land Development Authority (NALDA) which was established in 1971, the National Accelerated Food Production Programme (NAFPP) in 1972, the Agricultural Development Projects (ADPs) launched in 1973. Others include the Operation Feed the Nation (OFN) and the River Basin Development Authorities (RBDAs) which were established in 1976. Also, the Agricultural Credit Guarantee Scheme Fund of 1977, the Green Revolution (GR) in 1979, and Better Life Programme (BLP) in 1987 were among the programmes made for the benefit of the poor (Omokore, 2009). In addition, the Nigerian Agricultural and Cooperative Bank (NACB) and Community Banks were also established in 1986 and 1989, respectively. From 1986 to 1989, the Directorate of Food and Rural Infrastructure (DFFRI), the National Directorate of Employment (NDE) and the Mass Mobilization for Social and Economic Reconstruction (MAMSER) were established by the Federal Government (Agbam, 2006). The small and medium scale enterprises development agency of Nigeria (SMEDAN) was established in 2000 as well as the Poverty Alleviation Programme (PAP) in order to ensure improvement in the socio-economic status of farmers and rural dwellers. The National Poverty Eradication
Programme (NAPEP), which has the primary objective of improving the socio-economic well-being of rural people, is an offshoot of (PAP) and was established in 2001 (Aliu, 2001; Joseph, 2005). Going by the above submission, the Nigerian government is said to have recognized the prevalence of poverty among its people, particularly in the rural areas and made poverty alleviation as one of its objectives.

However, many of these government policies and programmes have failed to achieve their objectives as millions of Nigerians remain in abject poverty. A United Nations report on Nigeria’s Common Country Analysis, CCA, has described the country with a population of over 175 million, as one of the poorest and unequal nations of the world, with over 80 million (64%) of her population living below the poverty line of US$1 per day. Specifically, the poverty situation in Gombe State is growing at an alarming and geometric rate, this is because the total rate of poverty in 1980 was 43.31%, 1985 was 68.90%, 1992 was 83.50%, 2000 was 87.20% and 2006 was 90.22% (GOM-SEEDS II, 2007). By 2016, the poverty rate was reported to be 74.2% according to the National Bureau of Statistics. This clearly shows that the poverty level in Nigeria is high and persistent.

Besley (1997) identified credit and human capital as factors that significantly reduce poverty. Poverty in Nigeria is linked to the problem of employment in its income version and output growth is conceptualized in terms of the productivity of the employed workforce (FOS, 1999). According to the National Bureau of Statistics (NBS), the National unemployment rate in the 4th quarter of 2016 stood at 14.2%. This when translated into labour, means 29 million able-bodied Nigerians are unemployed. In addition, it is an established fact that the increasing level of poverty has a direct relationship with the unemployment level. Unemployment and a lack of access to regular means of livelihood in many households worsen the conditions of the poor in the rural areas. When people are unemployed, their source of livelihood depletes
over time, the cost of living becomes high and the standard of living goes down, for there is a strong correlation between unemployment and poverty. Hence, to arrest the issue of poverty, its key determinants such as unemployment, needs to be tackled for the government to achieve any reasonable level of success. Therefore, it is expected that government efforts at job creation would reduce the levels of unemployment and ultimately lead to a significant reduction in poverty levels.

Although, several studies have been conducted to examine the effects of poverty alleviation programmes in Nigeria (Syvester & Ekpenyong, 2014; Yakubu & Abbas, 2012; Onwe & Chibuzor, 2015; Bukar, Kura, & Idris, 2014; Bello, Toyebi, Bologun, & Akanbi, 2009; Obike, Ukoha, & Nwajiuba 2007; and Orji, 2005), however, most of the these studies have been conducted either based on NAPEP (like the first three mentioned studies) or using weak tool of analysis in the form of descriptive statistics that no any meaningful inferences can be drawn. The study worth noting is that of Obike, Ukoha, & Nwajiuba (2007) in which logistic regression model was used, but it was restricted to Abia State. However, to the best of the author’s knowledge, there is no existing study conducted to examine the effects of poverty alleviation programmes in Gombe State let alone the specific effect of NDE programmes on poverty alleviation.

The Gombe State chapter of the NDE was established in 1996 and it operates in line with the national mission statement of the NDE, which is “To design and implement job creation programmes that will promote attitudinal change, employment generation, reduce poverty and enhance wealth creation” (NDE, 2014). In addition, this is the same with the objectives, which includes;

i. To design and implement programmes to combat mass unemployment;
ii. To articulate policies aimed at developing work programmes with labour intensive potentials;

iii. To obtain and maintain a Data Bank on employment and vacancies in the country with a view to acting as a clearing house to link job seekers with vacancies in collaboration with other government agencies; and

iv. To implement any other policies as may be laid down from time to time by the Board established under sections of the enabling ACT.

The NDE therefore derives its routine functions from this mandate. The main goal therefore is to combat mass unemployment through skills acquisition, self-employment and labour-intensive work schemes. The federal government desire to have a permanent institution to handle the resultant problems of unemployment and poverty led to the establishment of this agency on 26th March, 1986. Despite all these objectives of NDE, as well as its well structured and coordinated organizational and institutional framework aimed at reducing unemployment and ultimately poverty nationwide, poverty in all its ramifications, still remains a common sight in our society till date. Hence, there is a dare need for a study such as this which seeks to assess the impact of the NDE programmes on poverty reduction.

1.3 RESEARCH QUESTIONS

In line with the above stated problems, this study sorts to provide answers to the following research questions:

i. What are the socio-economic characteristics of the beneficiaries of the NDE programmes in the study area?

ii. What is the impact of NDE programmes on the income and standard of living of the beneficiaries in the study area?
iii. Has the NDE programmes significantly reduced poverty among the beneficiaries in the study area?

1.4 OBJECTIVES OF THE STUDY

The main objective of this study is to assess the impact of the NDE programmes on poverty reduction in Gombe State. However, the specific objectives include:

i. To examine the socio-economic characteristics of the beneficiaries of the programmes in the study area.

ii. To determine the impact of the NDE programmes on the income and standard of living of the beneficiaries in the study area.

iii. To identify whether the NDE programmes have significantly reduced poverty among the beneficiaries in the study area.

1.5 RESEARCH HYPOTHESES

This study will test the following hypothesis:

i. H_0: The NDE programmes have not significantly reduced poverty among the beneficiaries in the study area

H_1: The NDE programmes have significantly reduced poverty among the beneficiaries in the study area

ii. H_0: The NDE programmes have not significantly affected standard of living of the beneficiaries in the study area

H_1: The NDE programmes have significantly affected the standard of living of the beneficiaries in the study area
iii. \(H_0 \): The NDE programmes have not significantly affected income of the beneficiaries in the study area

\(H_1 \): The NDE programmes have significantly affected income of the beneficiaries in the study area

1.6 SCOPE AND LIMITATIONS OF THE STUDY

The study covers the period 1996 to 2016; this is because the State was created in 1996 and the NDE started its operations during that time. This study considered the four programmes undertaken by the National Directorate of Employment (NDE) in Gombe State and which has been run in phases from its establishment in the state. These are the Vocational Skills Development Programme, Small Scale Enterprises Programme, Rural Employment Promotion Programme and Special Public Works Programme; which are targeted at fresh graduates, school dropouts, those without any formal education and people with special needs. The objective of which is to assess whether beneficiaries of these programmes have achieved a change in their poverty status, incomes and living standards. This research is limited to these programmes in the selected areas due to time constraint and inability of the researcher to trace a significant number of beneficiaries of the programmes in all parts of the State undertaken by the agency. However, a sample size of 400 respondents was selected based on the four programmes of the NDE and locations in the three senatorial districts of Gombe state.

1.7 SIGNIFICANCE OF THE STUDY

It is the intention of this study to unveil problem areas in the implementation of the selected programmes as well as to proffer policy recommendations that would benefit both the governments and relevant poverty alleviation agencies in their quest for poverty reduction and/or eradication in Gombe State.
The nature of poverty in Gombe State is multi-faceted and is more pronounced among the vulnerable groups in the society. This is attributed to rising unemployment situation, HIV-AIDS, illiteracy, poor infrastructural facilities, unstable economic growth and development, corruption, nepotism, favoritism, poor utilization of available resources, inadequate funding, poor communication systems and lack of entrepreneurial initiatives to support government projects and programmes (GOM-SEEDS II, 2007). Similarly, government efforts at programmes implementation are inadequate which has translated to increased dissatisfaction and cynicism amongst the populace (Isah, 2008). Thus, despite the existence of policies and programmes aimed at eradicating poverty nationwide, a significant number of people (over 70%) are still living below the poverty line (Ogbonna and Nwaobiala, 2014). This high level of persistent poverty has necessitated a re-examination of existing programmes to address this issue and proffer suggestions on how to make them more effective.

Therefore, assessing the impact of NDE programmes in Gombe State will be of significance to those that are saddled with the planning and implementation of ongoing and future poverty alleviation programmes. It is the intention of the study also to stimulate further investigations into the problem of persistent rise in poverty incidence in Gombe State and Nigeria in general with a view of alleviating poverty in the country.

1.8 OUTLINE OF CHAPTERS

This thesis is divided into five (5) broad chapters. The first chapter provides a general introduction of the study, which covers the following: background to the study, statement of the problem, objectives of the study and hypotheses as well as significance, scope and limitations of the study. Chapter two discusses the theoretical framework and review of related literature. It is devoted to discussions on the poverty and its measures. Chapter three discusses the methodology used in carrying out the research. It addresses such issues as the
research design, research population, sample and sampling techniques, instruments for data collection, validity and reliability, administration of research instrument and the procedure for data analysis. While chapter four presents the analysis of data, interpretations and discussions of results, the last chapter concludes the study with a summary and identification of the major findings. It also offers a number of recommendations and suggestions for future research.
CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter has attempted to review relevant literature. This review has tried to look at the major developments in the area of poverty with particular reference to: concepts and measurement, causes, effects, empirical review, the structure of the NDE and theoretical framework. The review will enable the work to be properly focused and tailored towards complementing existing body of knowledge.

2.2 CONCEPTS AND MEASUREMENTS OF POVERTY.

Different experts in giving a proper definition to the concept of poverty have made several attempts and its measurement based on their individual perspectives. Generally, asserted Nweze and Ojowu (2002), poverty concepts are categorized into three namely: absolute poverty, relative poverty and subjective poverty. These three concepts, which form the basis of poverty alleviation programmes, are reviewed below.

2.2.1 Absolute Poverty.

The term absolute or subsistence poverty has to do with basic human needs and is measured by resources required to maintain physical efficiency (Haralambos and Heald, 1980; Kuper and Kuper, 1996). They are simply essential goods and services used to satisfy basic needs of food, clothing, shelter and education.

Under this concept, the poor are determined through a yardstick known as poverty line, which is based on the level of income or consumption of individuals, households or groups in a given society (Balogun, 1999). The poverty line used by the World Bank for international comparison is one dollar ($1) per person per day (Kankwenda et al., 2000; UNDP, 1997; Ali-Akpajiak and Pyke 2003). Those below the poverty line according to Kankwenda et al.,
and Balogun (1999) are the poor and core or extremely poor giving rise to two poverty lines (upper poverty line and lower poverty line). Therefore, absolute poverty arises when there is an insufficiency in access to basic social services.

2.2.2 Absolute poverty measures

Absolute poverty can be measured through headcount ratio/incidence of poverty, poverty gap/income shortfall, disparity of income distribution and composite poverty measures as well as physical quality of life index and human development index (Ajakaiye and Adeyeye, 2001; Anyanwu, 1997; Balogun 1999).

a. The headcount ratio/incidence of poverty:

This measure provides in percentage, an estimate of the people living below the poverty line (Kankwenda et al., 2000). It is simply the ratio of the number of people categorized as poor to the total number of people in a given population.

\[
H = \frac{q}{n}
\]

Where:
- \(H \) = poverty ratio
- \(q \) = number of people below the poverty line.
- \(n \) = total number of people in the sample population.

This gives the proportion of those whose income falls below the poverty line in the sample population. While this approach is useful in indicating the scope of poverty problem, it has been criticized for being insensitive to the differences between individuals who are below the poverty line. That is, it does not indicate how poor the poor are, thereby failing to measure the depth and severity of poverty.
b. The poverty gap/income shortfall:

This is the difference between the poverty line and the average income of the poor expressed as a ratio of the poverty line, World Bank (1993). It captures the degree of income shortfall below the poverty line, thereby, providing a statement on the level of income needed to raise the income of the poor to the poverty line. Symbolically, the income gap ratio is stated as:

\[I = \frac{Z - Y_a}{Z} \]

(2.2)

Where: \(I \) = average income shortfall.

\(Z \) = poverty line.

\(Y_a \) = average income of the poor.

It measures the depth of poverty because it indicates the amount of money required to raise the income of the average poor person up to the poverty line. Taking the product of \(H \) and \(I \) which incorporates the number of those poor and depth of their poverty into a poverty level represented by \(P_1 \) gives us:

\[P_1 = \frac{q}{n} \cdot \frac{Z - Y_a}{Z} \]

(2.3)

Though the poverty gap index indicates the depth of poverty, it fails to capture its severity as it does not reflect the distribution of the standard of living among the poor.

c. Disparity of income distribution:

This measure according to Balogun (1999) and Echibiri (1997) deals with the Lorenz Curve and Gini Coefficient. Lorenz curve shows graphically the variance in the extent of income distribution from equality. It presents the relationship between the cumulative percentage of income of the poor (on horizontal axis) and the cumulative percentage of the poor population.
The Gini Coefficient measures income inequality based on the Lorenz Curve. It is the ratio of the area covered by the diagonal line to the horizontal axis.

It is symbolically presented as:

\[
\frac{\text{Area between the Lorenz Curve and the diagonal line}}{\text{Area between the diagonal line and horizontal axis}}
\]

Where: \(0 \leq G \leq 1\)

The higher the value of the coefficient, the greater the inequality in income distribution. Conversely, the lower the value of the coefficient, the more equitable the distribution of income. While a zero coefficient indicates perfect equality in income distribution, there is perfect inequality in income distribution if the coefficient value is one. These approaches measure income distribution but fail to consider the number of people below the poverty line and the extent of their impoverishment.

d. The composite poverty measures

The measures considered here are the Sen Index and the Foster, Geer and Thorbecke (FGT) index.

(i) The Sen Index (S) is symbolically written as:

\[
S = H \left[1 + (1 - I)GP \right]
\]

Where:

\[
I = \sum_{i=1}^{n} \left(\frac{Z - Y_a}{q_x} \right)
\]

Where;
I = average income shortfall as a percentage of the poverty line.

Ya = average income of the poor

Z = poverty line

H = head count ratio \(\frac{q}{n} \)

\(qz \) = number of households whose incomes are below the poverty line.

Gp = Gini coefficient among the poor, \((0<Gp<1)\)

Here, 'S' (poverty) is determined by all the variables (H, I and GP) in the equation positively.

That is to say, S increases as all or either of them rise(s) and vice versa.

The Sen Index is criticized on the ground that it depicts a situation of poverty reduction in which the least needy is addressed before the neediest.

(ii) The Foster, Geer and Thorbecke (FGT) index also known as the ‘P’ alpha measure is written as:

\[
P_\alpha = \frac{1}{n} \sum_{i=1}^{q} \left(\frac{Z - Ya}{Z} \right)^{\alpha} \]

(2.6)

Where:

\(P_\alpha \) = a class of additively decomposable measures

n = the total number of people in the reference sample population

q = the number of individuals below the poverty line

Z = the poverty line

Ya = the average income of the poor
\(\alpha \) = FGT index and takes the values of 0, 1 or 2.

The determinants of poverty here are the same as those of equation (3). The only difference is the introduction of alpha (\(\alpha \)). Here, ‘P alpha (P\(\alpha \))’ is replaced by P0, P1 and P2, which denote headcount (incidence), depth and severity respectively.

2.2.3 Relative Poverty

Relative poverty is a situation where an individual’s or a household’s income is less than the average income of the population in the society being considered.

2.2.4 Relative poverty measures

Since relative poverty is unique in every society, its measurement depends on the judgment of the society being considered and this varies across societies. It therefore means that people can be regarded as being in relative poverty only by reference to the standard of living of the members of that particular society (Schiller, 1976; Kuper and Kuper, 1996). Relative poverty, in the opinion of Meier (1964) can be measured through inequality by the extent to which the income share of groups of individuals or households differs from the population share of income. The two types of relative poverty measures discussed by Anyanwu (1997), Ajakaiye and Adeyeye (2001) are the average income and the proportion of the population whose income is less than the mean income.

\textit{a. Average income.}

This is average income of a specific percentage of the population that is poor in relation to the set income of the general population. The average income measure is made up of the average income of the poorest 40\% of the population or the average income of the poorest 10\% or 20\% of the population.
b. *Those whose income is less than the mean income.*

This measure is concerned with the proportion of the population whose income is less than or equal to the predetermined percentage of the mean income. For instance, those whose income falls below 50% of the mean income can be categorized as being in relative poverty.

2.2.5 Subjective Poverty

This concept of poverty which is “expressed in a range of non-material and intangible qualities” (Nweze, *et al.*, 2002), is based on respondents’ perception of their standard of living. The feeling of whether one is poor or not depends on the absolute minimum standard of living below which one is categorized as poor (Vaidyanathan, 2002; Haralambos and Heald, 1980).

2.2.6 Subjective poverty measures

Measurement of subjective poverty depends on individuals. This is because the perception of being poor or not is determined by individual respondents. Results collected from participatory studies such as ‘voices of the poor’ (Nweze and Ojowu, 2002) are used to measure subjective poverty.

This study is focused on absolute poverty as attempts made by the government to reduce poverty have led to the establishment of poverty alleviation programmes aimed at attacking absolute poverty. Though all the concepts are relevant in the study area and indeed, Nigeria and developing countries, poverty eradication under absolute poverty is given the most priority. It is the most common form of poverty and attempts by governments to address poverty have focused more on reducing absolute poverty.
2.3 CAUSES OF POVERTY

Though poverty is said to result from many causes, Oxfam Community Aid Abroad (1992) was of the view that poverty is primarily a function of entrenched social and economic inequality at both the national and international levels. At the international level, such inequality is manifested in the areas of trading and financial system where developed countries which are in minority in the world economy enjoy affluent lifestyle at the expense of developing countries which constitute the majority. This view is corroborated by that of Central Bank of Nigeria (1998) which said that poverty results from the international economic system’s interdependency relationship where a set of countries (developed countries) gains an economic advantage over another set of countries (developing countries) for a given situation. The CBN continued that developing countries’ indebtedness, payment of increasing prices for imported inputs from developed countries as against their relative low export prices perpetuate international inequality, which leads to growing number of poor people in developing countries. At the national level, inequality also exists and causes poverty especially in developing countries. In Nigeria, a small group controls State power and enrich themselves by controlling a large part of the national wealth. This hinders the growth potential of the economy as resources are looted and not invested; the country suffers mismanagement, competition and bad government, leaving it in a State of poverty and deprivation (Kwanashie, 1998).

Jhingan (2002), Ajakaiye and Adeyeye (2001), World Bank and International Monetary Fund (1999) identified slow economic growth as a major cause of poverty in developing countries especially for countries like India, Bangladesh and much of Africa which are characterized as being in massive poverty. That the slow growth rates witnessed in developing countries result from adverse changes in terms of trade, changes in world demand for exports as well as the effects of changes in global interest rates on developing countries’ external debt. In Africa,
the continuous spread of poverty according to Kankwenda, et al (2000) is attributed to virtual stagnation in average annual per capita growth rate of 2.1 percent between 1991 and 1995, and limited prospects for economic growth. The World Bank and IMF also observed that in some African countries where economic growth rates have exceeded population growth rates, poverty has persisted because of uneven distribution of the benefits of growth and poor governance, which diminishes growth’s potential impact on poverty. Hence low productivity which is caused by slow economic growth rate leads to poverty as the consuming unit becomes incapable of earning an adequate income that will enable it maintain decent living standards (Central Bank of Nigeria and World Bank 1999).

In many countries of the world, macroeconomic disequilibrium caused by balance of payments deficits, poor fiscal management, etc., have made it necessary for them to embark on major policy reforms since these conditions on their own would still produce poverty. These reforms have led to monetary and fiscal policy measures that have negatively affected cost and access to credit by the poor, retrenchment, high cost of domestic production and decline in capacity utilization all of which have worsened poverty situation (Ajakaiye and Adeyeye 2001). Deng (1994) argued that economic reforms such as structural adjustment programmes have contributed to increase in poverty in developing countries as they hurt the urban vulnerable groups of unskilled and semi-skilled workers as well as public sector workers who were marginally living above the poverty line before reforms. On their part, Anyanwu and Nsoro (2002) said that policies like privatization and commercialization have not only led to greater inequality but also denied majority of Africans access to necessities of life such as health, potable water and sanitation thereby making them poorer.

In addition, adverse impact of certain economic policies has also brought about the increases in developing countries’ poverty levels. Rural areas have been neglected and marginalized for
decades through economic policies, which have continued to favour the urban elites. Development spending in Africa has been biased in favour of State farms as against private holdings and commercial farming as against subsistence farming while development of rural infrastructure as well as agricultural research and extension, which could benefit the rural poor, is underfunded. In Nigeria, economic management policies have led to structural shifts that influenced negatively on economic activities embarked upon by the majority thereby causing poverty. Such shift has led to undue concentration on crude oil to the neglect of agriculture, which was the main employer of labour. This has brought about untold hardship and swelled the number of poor in Nigeria (Central Bank of Nigeria and World Bank 1999; CBN 1998; Deng 1994; Ferroni and Kanbur 1990).

Economic circumstances forced most developing countries to borrow money from banks and governments of developed countries only to repay far more than the amount borrowed due to high interests charged. According to Ajakaiye and Adeyeye (2001), debt servicing diverts resources needed for socio-economic development; this implies that productive sectors like agriculture and manufacturing are poorly financed and saddled with low productivity, low capacity utilization, underemployment and low purchasing power pushing the masses into abject poverty.

Imperfections in the free markets of African countries due to liberalization have led to increasing poverty and its attendant feeling of hopelessness. In the areas where ordinary Africans used to earn average income that guaranteed decent living standard, liberalization has made it difficult for even higher education graduates to be gainfully employed. Therefore, liberalization is said to have sunk many developing countries into more problems of debt, poverty, unemployment, exploitation and political upheavals (Anyanwu and Nsoro).
According to Ghosh (2000), despite trade liberalization witnessed in many developing countries, market access remains a problem for their exports in addition to the fact that their productive sectors are threatened by imports of subsidized agricultural goods and manufactures of multinationals that possess tremendous market power. The imperfections in the markets thus skew income distribution structure in favour of some classes in the society thereby rendering the less favoured class poor (Central Bank of Nigeria and World Bank, 1999). A country whose population growth rate is faster than its Gross Domestic Product growth rate is likely to witness an increase in its poverty level especially if it is characterized by subsistence living conditions. This is because whatever is obtained is consumed, as current income is lower than current consumption. The result is absence of economic surplus (savings) for investment in capital formation. In the words of Filipov (n.d.), many developing countries are poor because their rapid population growth is associated with manual subsistence farming, infertile land as well as lack of economic resources (credit) and technology to boost productivity.

Many African countries have been affected by civil wars caused by European empire building in the nineteenth century. This resulted to many African tribes being joined in one country while in some cases, half a tribe was left in another country. However, civil wars in countries like Angola, Mozambique and Guatemala have been caused by corruption and political differences. The impact of wars has been destruction of homes, schools, crops, hospitals as well as influx of refugees into neighboring countries, all of which cause poverty. In other words, many developing countries are characterized by political instability that worsens their poverty situations. According to World Bank (2001), conflicts, wars, economic crisis and natural disasters do not only affect prevailing living conditions of the poor but also their ability to escape from poverty. As a result of increasing number of countries that have
been affected by armed conflicts and social unrests, about half a billion people are experiencing poor living conditions (World Bank and IMF 1999).

Environmental degradation caused by misuse or overuse of land resources also lead to poverty. This is because environmental degradation results to deforestation, desert encroachment, blight and oil spillage all of which are destructive to endowed land resources and this does not only raise the number of those poor but also deepens the incidence of poverty. Such environmental problems have brought about shortages of food, clean water, and raw materials for shelter and thus aggravated poverty in Ethiopia, Sudan and Somalia (Filipov N.D.; Central Bank of Nigeria and World Bank 1999). In their contributions, Ajakaiye and Adeyeye (2001) opined that there is a reverse causality between poverty and environmental degradation in developing countries. In such countries, a number of environmental resources are complementary in production and consumption to other goods and services and complement income particularly in time of acute economic stress. In this case, ‘erosion’ of the environmental resource base could make certain categories of the population poor and even destitute. On the other hand, inaccessibility to the poor of credit facilities compels them to employ natural resources such as forestry, woodlands and rivers in order to survive. The resultant effect on these resources is depletion and consequently environmental degradation.

Inadequate or even absence of social services like good education and good health facilities also cause poverty. Governments of developing countries find it difficult to provide for good public schools especially in rural areas without which most people cannot find any meaningful income-generating work. Even for those who manage to acquire some form of education, the availability of only few employment opportunities in developing countries only exacerbate unemployment and poverty as high unemployment leads to high levels of
poverty (Filipovn.d.). In the words of Ajakaiye and Adeyeye (2001), inadequate investment in human resource capital (education) makes people to be faced with limited opportunities, low productivity and stagnant, or a decrease in its, real earning power whose consequence is lower living standard thus perpetuating poverty. They also observed that poor health facilities distorts human capital, reduces returns from education and impedes entrepreneurial activities thereby holding back economic growth and development.

Central Bank of Nigeria (1998) and Odusola (1997) summarized the causes of poverty to include:

a. Inadequate access to income earning and productive activities such as land, capital as well as necessities of life such as shelter, health, education and safe water;

b. Inadequate participation in the political process (even in the design and implementation of programmes that are meant for the poor) and absence of the poor’s influence on the potential life of their societies;

c. Inadequate or near absence of developmental efforts in the areas inhabited by the poor in preference to urban and high potential areas;

d. Inadequate access to markets for goods and services of the poor in rural areas due to poor road network; and

e. The effects of external economic and financial factors over which governments of developing countries such as those in Africa have no control.

2.4 **EFFECTS OF POVERTY.**

A society is likely to remain largely in subsistence production if most of its members are poverty-stricken as the poor can hardly afford capital for expansion in production. They thus resort to labour intensive production with the margin of productivity remaining low. This
situation is worsened by the fact that subsistence production is not fully utilized as it is constrained by poor processing and storage techniques, unfavourable weather conditions as well as damages caused by pests and diseases. Even where some of the poor benefit from credit facilities, instead of using such loans to boost production, they are sometimes misallocated because of indebtedness, low educational attainment and low sales proceeds (CBN 1998, and Aku et al, 1997).

Central Bank of Nigeria (1998), Aku et al (1997) further opined that poverty leads to little or no confidence in constituted authorities and this does not only generate disrespect from the poor public but also renders government policies ineffective. This is because their loyalty, which is seen as the reciprocal of benefits from government, remains daunted, as they feel uncatered for.

Some of the effects of poverty are evident in consumption, justice, health and politics argued CBN (1998). In the area of consumption, the poor obviously pay higher prices for the goods and services they consume. This is because their meager incomes restrict them to purchases in small pieces thus preventing them from enjoying discounts, which are associated with bulk purchases. The poor are not only denied justice but are easily arrested and often given stiffer penalties than the non-poor for same or similar offences. As regards health, the poor who have little or no access to qualitative health facilities also have less nourishing diets, more birth defects, accidents and disease infections than the non-poor do. These in turn affect their productivity and quality of life. In politics, the poor are so unorganized that they can hardly influence any political decision or make any meaningful impact in voting for a candidate of their choice into an elective office.

According to World Bank (2001), the poor are not only deprived but also seriously feel their lack of voice, power and independence. In other words, they find themselves in a State of
helplessness and powerlessness. Describing the complete powerlessness of the extreme poor, Kwanashie (1998) said that in addition to the fact that most of the time they have absolutely no power to influence their destiny and thus left at the mercy of those considered powerful in the society, their inability to escape from extreme poverty condemns generations after generations to the same fate. One of the effects of poverty is that underage children are made to contribute to the family’s means of livelihood as they are pulled out of school to earn extra income particularly during an economic crisis (World Bank, 2001). The implication is that such children either become dropouts or perform poorly in their academic pursuits. The report added that such families are not only quick at selling their land and livestock/farm products at desperately low prices but are tied to the rich landowners in patron-client relationships.

Another effect of poverty is malnutrition, as the poor cannot obtain adequate calories needed to develop and maintain the body system. Malnutrition leads to stunted growth, poor malnourishment which if prolonged could lead to death. Also, since the poor are faced with poor housing, poor clothing, poor health and poor sanitary conditions, they are exposed to and are infected with diseases transmitted by other people and animals (and Filipovn. d.; Aber, Bennett, Conley and Li, 1997).

According to Kwanashie (1998), poverty limits the process of capital accumulation and the ability to cope with the technological process as it does not only reduce the number of potential investors but also undermines the zeal for investment. He added that poverty leads to gradual collapse of a society’s social order as it gives room for numerous social ills. Commenting on the effects of poverty in Nigeria, Kwanashie (1998: 318) opined that: The collapses of the family, child abuse, prostitution, which have not really been serious problems for the country, are now major concerns. Poverty is destroying the very foundation of the
nation. This is resulting in the rapid declining moral basis of the society. Poverty, but in particular the rapid expansion of extreme poverty in Nigeria has translated to powerlessness for the majority of Nigerians.

2.5 GOVERNMENT POVERTY ALLEVIATION PROGRAMMES

Below are some of the projects/programmes that have been undertaken by several past governments as a form of poverty eradication:

Table 2.5.1: Poverty Alleviation Programmes in Nigeria.

<table>
<thead>
<tr>
<th>Programmes</th>
<th>Year</th>
<th>Target Group</th>
<th>Objective (Nature of Intervention)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Accelerated Food Production Programme (NAFPP)</td>
<td>1972</td>
<td>Peasant Farmers</td>
<td>To educate farmers and poverty reduction</td>
</tr>
<tr>
<td>Nigeria Agricultural and Cooperative Bank (NACB)</td>
<td>1972</td>
<td>Peasant Farmers</td>
<td>Agricultural Financing And poverty reduction</td>
</tr>
<tr>
<td>Operation Feed the Nation (OFN)</td>
<td>1979</td>
<td>Rural dwellers</td>
<td>Increase food Production and expend income levels to lift them out of poverty</td>
</tr>
<tr>
<td>Directorate for Food, Roads and Rural Infrastructure (DFRRI)</td>
<td>1986</td>
<td>Rural Dwellers</td>
<td>Feeders road rehabilitation, rural water supply and rural electrification</td>
</tr>
<tr>
<td>National Directorate of Employment (NDE)</td>
<td>1986</td>
<td>Unemployed Youths and the poor.</td>
<td>Training, financing and poverty reduction</td>
</tr>
<tr>
<td>Better Life Programme (BLP)</td>
<td>1987</td>
<td>Rural Women</td>
<td>Self help and rural development programme, skill acquisition and healthcare</td>
</tr>
<tr>
<td>People’s Bank of Nigeria (PBN)</td>
<td>1989</td>
<td>Underprivileged In rural and urban areas</td>
<td>Securing loans and credit facilities to alleviate poverty</td>
</tr>
</tbody>
</table>
Community Banks (CB) | 1990 | Rural residents and microenterprise | Securing loans and credit facilities
---|---|---|---
Family Support Programmes (FSP) | 1994 | Families in Rural areas | Health care and child Welfare developments
Family Economic Advancement Programme (FEAP) | 1998 | Rural Dwellers | Credit facilities to support the establishment of cottage industries
Poverty Alleviation Programme (PAP) | 1999 | Poor People | Job creation and poverty alleviation
National Poverty Eradication Programme (NAPEP) | 2001 | Poor and unemployed in rural and urban areas | Job creation and credit facilities to the poor
National Economic Empowerment and Development Strategy (NEEDS) | 2004 | The poor in the society | Government reformation, access to health education, welfare, employment, empowerment, security and participatory governance

Source: Arogundade et al., (2011) and Adapted by Author.

2.6 EMPIRICAL REVIEW ON IMPACT OF POVERTY ALLEVIATION PROGRAMMES IN NIGERIA.

Many Studies have been undertaken by various researchers on poverty related issues under many perspectives as well as the role that agencies or programmes play in poverty reduction in Nigeria.

First of all, Isah (2008) conducted a research on social Policy as it affects poverty alleviation in Gombe State. The study was centrally aimed at examining the nature and impact of social policies and their implication on poverty alleviation and development in Gombe State from 1996 to 2004. The study made use of both primary and secondary data. The population for the research was the total populace of Gombe State that was put as 2,253,879 as at 2006 while the sample size was 300 units of respondents that were selected using cluster and
stratified random sampling techniques. The study found that most of the people in Gombe State lacked access to basic social services and amenities, which aggravated the poverty situation in the State.

Also, Patrick and Orok (2009) studied the relationship between public expenditure and growing incidence of poverty in South Eastern States of Nigeria. The objectives of the study were to determine the impact of poverty on human development, to examine the implications of government budgetary allocation (to selected area of specific needs) on development and to assess the effectiveness of national poverty alleviation programmes in Nigeria particularly the south-eastern states. The investigation was based on library research, which consisted of a review of the theoretical background and some related literature/works carried out in the area of study. Data was sourced from secondary and primary sources through the administration of questionnaire to the poverty alleviation stakeholders, junior and senior staff of related ministries, and employees of core poverty alleviation agencies, State Government Committees of poverty alleviation, local government poverty alleviation committee and representatives from all the wards in the area of study. Results show that despite the government initiatives towards poverty alleviation, the incidence of poverty is still on the increase. Further Evidence reveals that the high incidence of poverty has translated to underdevelopment. The poverty alleviation programmes are less effective as their performance is poor. Reasonable confusion, conflict of goals and duplication of functions were prevalent in poverty alleviation agencies and programmes.

Bello et al., (2009) investigated into the impact of government programmes towards poverty alleviation on the inhabitants of Nigeria with special reference to Asa and Ilorin West Local Government Areas of Kwara State. A focus group discussion (FGD) of 4 groups (2 males and 2 females) was conducted from whose scenario a questionnaire was raised. Both qualitative
and quantitative methods were employed especially to see the impact of those policies on the inhabitants using household income as a proxy. The Sen's Gini coefficient revealed that agricultural sector is the highest income-contributing sector and worst hit income inequality group with about 84 percent of total population in high poverty margin/region among the whole sectors studied. The study also acknowledged the existence of either one poverty alleviation program at one time or the other, but often the policy targets are at variance with the outcome.

Ebenehi (2009) undertook a study, which was designed to assess the impact of NAPEP on the livelihood of participants in some local government areas of Kogi State. Data was collected using questionnaire and analyzed, using descriptive and inferential statistical tools. The Double-Difference Estimator (DDE) was used to compare changes in outcome measures. Findings indicate that majority (67%) of the participants were male while 33% were female. About 40% of the participants were of the age range of 44-53 and 62% were married with 60% having a household size range of 5-8 persons, with about 38% having trading as their major occupation. The mean income of NAPEP participants increased from N106,556 before the intervention to N249, 675.00 after the intervention (134%). Income of the non-participants increased from N98, 351 before the intervention to N120, 127 after the intervention. The level of living of participant increased from N77, 523 before the intervention to N233, 268 (200%) after the intervention because of participation in the programme.

Aiyedaghan and Ohwofasa (2012) studied the relationship between Poverty and Unemployment in Nigeria. The objective of the research was to scrutinize the effect of unemployment on poverty in Nigeria. The method of analysis employed was the Ordinary Least Squares (OLS) with the use of secondary data covering the period of 1987-2011. The
study employed incidence of poverty as a function of unemployment, agricultural, manufacturing and services contributions to real GDP, population and inflation rate in which the growth rate of the variables were modeled. The results of the study revealed that unemployment, agricultural and services contributions to real GDP as well as population have positive determining influence on poverty level in Nigeria with only agricultural sector statistically insignificant. On the other hand, manufacturing sector contribution to real GDP and inflation rate exhibited negative relationship on poverty level in Nigeria with only manufacturing sector appearing significant. The study recommended among other things, that holistic governments should make effort at all levels to create jobs and arrest unemployment.

Shehu, Abdullahi and Haruna (2012) studied the impact of the intervention of the International Fund for Agricultural Development (IFAD) on poverty reduction in selected local government areas of Sokoto State, Nigeria. The study employed logit regression approach to data analysis. Increased capital expenditure was used as a proxy variable for IFAD intervention in the logistic model. The coefficient of the proxy variable clearly shows that IFAD poverty reduction intervention did not result in any statistically significant reduction in poverty.

Yakubu and Abbas (2012) made a study on National Poverty Eradication Programme (NAPEP) and poverty alleviation in rural Nigeria. The major objective of the study was to analyze the framework of NAPEP in order to ascertain the impact of the programme on the people of Giwa local government area of Kaduna State. Purposeful and simple random sampling technique was used to sample 220 respondents in the study area. Data was collected from the respondents using the interview schedule and 179 questionnaires were used for the analysis. The results of the study revealed that poverty alleviation programmes, specifically NAPEP in the study area failed because majority of the population agreed that there were no
mobilization about NAPEP programmes in their localities and as such, they did not have access or privilege to benefit from any of their programmes.

Kpelai (2013) in his assessment of NAPEP on wealth creation in Benue State examined the current strategies adopted by the Federal Government of Nigeria through National Poverty Eradication Programme (NAPEP) and the impact it has on the beneficiaries in Benue State. The explanatory-survey method was utilized for the collection of data through questionnaire administered on one hundred and nine (109) respondents selected from beneficiaries and key officials of NAPEP in six (6) local government areas of Benue State. Findings suggested that the strategies employed by NAPEP had not made significant impact in improving the lives of beneficiaries in Benue State. Structural defects were encountered in implementation strategies adopted by NAPEP. More so, corruption, poor funding and untimely release of funds, weak monitoring and impact assessment plans, bad governance were major problems constraining the successful implementation of poverty reduction programmes in Nigeria.

Bashir and Hussaini (2014) examined the activities of the National Poverty Eradication Programme (NAPEP) on poverty reduction in Bauchi State. They study assessed the performance of these activities along with their impact on the socio-economic lives of the beneficiaries in Bauchi Local Government Area of Bauchi State. Data for the study was collected through questionnaire and In-depth Interviews. The information required was gathered from 210 respondents consisting of 200 beneficiaries and 10 officials of NAPEP, Bauchi State office. The respondents were selected using systematic and availability sampling techniques. Data collected in the study were presented and analysed using simple frequency, percentages and cross tabulation. Chi-square was used to gauge the performance of NAPEP on poverty reduction in Bauchi State. The study revealed that the programme has impacted positively on the beneficiaries, especially in the areas of job creation, improvement
in income, improvement in raising the respondents’ level of education, improvement in social status, etc.

Binuyo (2014) studied the effect of poverty reduction programs on economic development in Nigeria. This research was aimed at finding out the causes of poverty and how this menace could be reduced to the minimum through policy recommendations. The study also investigated the significant effect of various anti-poverty programs set up by various administrations to reduce the level of poverty in Nigeria. The time period covered was 1980–2010, with the use of time series data obtained from secondary sources. Ordinary Least Square technique was employed to measure the incidence of poverty. The analysis was facilitated with the use of E-views analytical package. The study revealed that there is an overall significant effect of poverty reduction on economic development in Nigeria.

Ogbonna and Nwaobiala (2014) studied the effect of Fadama III project on rural women production in Gombe State, Nigeria. The study analyzed socio economic characteristics of rural farm women, determined the effect of the project on the participating rural farm-women (in terms of farm size, selected variable inputs, income and output) in Gombe State and described the problems militating against effective participation of rural farm-women in the project. A multistage random sampling technique was used in the selection of six Local Government Areas, Fadama Community Associations (FCAs), Fadama User Groups (FUGs), participating and non-participating rural farmers. A structured questionnaire was administered to 360 randomly selected rural women farmers (180 participating and 180 non-participating rural women farmers). Data were analyzed with descriptive statistics like frequencies, percentages, mean and paired t-test. The study revealed that participating rural women and non-participating rural farmers had mean ages of 35.5 years and 36.72 years respectively and acquired secondary education. In addition, Fadama women farmers had
mean farm size of 11.91 while the non-Fadama farmers farmed on 9.52 hectares of land. Both farmers groups had a monthly income of N 75, 59.28 (Fadama Rural Women Farmers) and N27, 505.56. The paired t-test showed that farm income, fertilizer and labour use of Fadama women farmers were higher than the non-participating farmwomen at 1.00%. 5.00% and 10.00% levels of probability respectively. The study therefore recommends timely supply of farm inputs by the project, prompt payment of counterpart funds by relevant agencies and replication of the project to reduce rural poverty in the State.

Saleh (2014) assessed NAPEP in some selected northern states of Nigeria. The study examined whether the administration of NAPEP had contributed to its success or failure to alleviate poverty among its targeted population in Kaduna and Bauchi States of Northern states of Nigeria. The study covered period between 2005 and 2010 and concentrated on four schemes/programmes (FEP, COPE, YES and VEDS) out of the NAPEP Schemes/programmes. The research design was basically a survey research and data were generated from both primary and secondary sources with questionnaires, interviews and personal observation as the instruments for generating the primary data. The populations of the study were two. One was the staff of NAPEP in Bauchi and Kaduna States at the Headquarters and the selected Local Government areas whose number was 43 while the second was the beneficiaries’ population who were 3,051. However, 39 individuals were selected to serve as the sample size for the staff while 354 were selected from the beneficiaries to represent their population. Random sampling and Cluster sampling techniques were adopted in sampling the respondents from staff and beneficiaries respectively. Data were analyzed qualitatively and hypotheses were tested using Pearson Chi-square test. The study revealed that there was ineffective coordination of activities in NAPEP among its various offices, collaborating enterprises and other government poverty alleviation institutions. Monitoring of activities of the programme was also found ineffective.
Zacheus and Omonigho (2014) assessed the impact of Ekiti State Government’s intervention projects on poverty alleviation/reduction in Ekiti State, Nigeria, from 2007-2011. The paper identified some intervention projects/programmes executed in six Local Government Areas in three Senatorial Districts, identified the providers of these projects, and assessed the extent to which the projects impacted on poverty alleviation of the people. The study attempted finding answers to research questions by using survey design and judgemental sampling technique to collect data from 630 respondents with the aid of a 25-item structured questionnaire and personal interview. The respondents comprised of civil servants, farmers, and traders/artisans within the communities. Data for the study were analysed using descriptive statistics and chi-square (X^2) was used to test the hypothesis posed for the research at 5% significant level. The findings revealed that developmental projects were implemented by the State, local government and international/non-governmental agencies within the study area during the study period. In addition, there was an impact of government’s intervention projects on poverty alleviation in Ekiti State within the study period but, the impact was insignificant.

Onwe and Nwakamma (2015) in their assessment of the National Poverty Reduction Programmes in Nigeria studied the National Poverty Eradication Programme in Ebonyi State. Due to the high rate of poverty in Nigeria, the study became imperative for the negative effects of poverty often manifests into socio-economic problems. They put the national poverty level at 69% and Ebonyi State had 73.6% rate, which is a clear indication of the high level of poverty in Nigeria. The study made an evaluation of NAPEP’s performance in areas of human capital development, infrastructure facilities, access to safe drinking water, sanitation and access to basic education, which are some of the parameters for measuring poverty level. A descriptive survey design was adopted with a sample population of 400, which spread across the six local governments studied. The major instrument for data collection was a structured questionnaire, which was distributed to the respondents and a total
number of 380 questionnaires were duly filled and returned representing 95% of the sample population. The data collected was analyzed with statistical tables, percentage calculations and chi-square. The major findings of the study shows that NAPEP has not really affected the development of human capital, it equally revealed that the agency has not improved access to basic education and infrastructural facilities. Insincerity and corruption on the part of contractors; inadequate sensitization, poor coordination, narrow coverage, excessive politicization have been identified among others as the challenges facing the programme.

The fundamental shortcoming of all the above studies lies in the failure to properly identify some of the proximate causes of poverty in their research, one of which is unemployment especially in rural areas. They focused on the successes and failures of these intervention programmes or projects instead. It is the intention of this study to assess an income-generating programme such as the NDE as a tool not only to increase household income in terms of monetary value, but also to lift poor families out of poverty. In terms of analytical tools, apart from the study by Shehu, Abdullahi and Haruna (2012), all others focused essentially on simple percentage analysis and descriptive statistics, which further aggravates the analytical enigma. Thus, this study is a modest attempt at a more rigorous analysis, which aims at evaluating the impact of NDE programmes on poverty alleviation in Nigeria.

2.7 STRUCTURE AND PROGRAMMES OF THE NATIONAL DIRECTORATE OF EMPLOYMENT.

At the apex is the management board chaired by the Honourable Minister of Labour and Productivity, while the board is charged with the responsibility of policy formulation for the directorate’s operations, the Federal Ministry of Labour and Productivity serves as the supervising Ministry of the NDE. The NDE has offices in all the 36 State capitals of the Federation and the Federal Capital Territory Abuja. Also, at the local government council
areas, there are NDE Desk/Liaison Officers who ensure adequate coverage and implementation of all its employment generation schemes. To strengthen programme implementation and projects monitoring, six zonal offices in the six geo-political zones of the country were created. A Director operates each zonal office and a State coordinator coordinates each State office.

The target population that the NDE programmes aims at addressing are; School leavers, Graduates of Tertiary institutions, Matured persons, People with special needs, Women and Prospective entrepreneurs, and artisans. The NDE has four core programmes departments, four support service department that assist the programmes department in ensuring that the mandate of the directorate is adequately achieved. This are-

1. **Vocational Skills Development Programme (VSD):**

 This programme involves the use of informal sector operators such as master craft-men and women as training outlets for unskilled school leavers. Such school leavers are attached to them for periods long enough for the apprentice to acquire necessary skills. It also includes the deployment of well-equipped mobile workshops to train unemployed youths in rural areas where informal training outlets are non-existent. The schemes under the Vocational Skills Development Programme are:

 (a) National Open Apprenticeship Scheme (Basic and Advanced)

 (b) School-on-wheels

 (c) Vocational Skills for Physically challenged and vulnerable persons

 (d) Partnership in Skills Training (PIST)

 (e) Resettlement Loan Scheme.
2. **Small Scale Enterprises Programme (SSE)**

The Business training programme provided by the National Directorate of Employment covers several areas of business development for various categories of unemployed persons and potential entrepreneurs. The schemes under the SSE department where action are carried out nationwide (subject to availability of funds) are:

a) Business Training - (for Graduates of tertiary institutions and artisans/school leavers and retirees (Entrepreneurship Development Programme - EDP). This includes; Enterprise Start-up and development Training Scheme (formerly Start Your Own Business), Micro Business Skills Training Scheme (formerly Basic Business Training), Advanced Entrepreneurial Development Scheme and NDE-Enterprise and Finance Counselling Clinic (NDE-EFCC)

b) Loans Disbursement Schemes – Enterprise Creation Fund

c) Training for Women in Income Generating Activities

d) Common Facility Centres, and

e) Collaborations with Government Agencies, Multinational organisations, high profile individuals and communities.

3. **Rural Employment Promotion Programme (REP):**

In a bid to awaken the interest of the unemployed youths in agriculture to exploit the tremendous opportunities for employment and wealth creation in the sector and consequently, stem the rural-urban drift of the youths, the NDE designed a special training programme for youths in agriculture. The schemes operational nationwide under REP include:

a) Rural Agricultural Development Training Scheme (RADTS)

b) Rural Handicraft Training Scheme (RHTS)
c) Integrated Farming Training Scheme (IFTS)

d) Post-RADTS Training Scheme

e) NDE Agricultural Park Project.

To enhance the quality of training under the RADTS, the NDE commenced the establishment of Agricultural Skills Training Centres. At present, about 28 centres have been established with 20 fully operational. The remaining 8 centres are at various stages of completion. Each of these centres has accompanying Demonstration Farms.

4. Special Public Work Programme (SPW)

The NDE views infrastructural construction and maintenance as capable of becoming a labour sponge. The International Labour Organization (ILO) subsequently introduced to the NDE the use of labour based light equipment method of construction and maintenance of rural infrastructure. This was pilot-tested successfully by the NDE and was adopted as an effective employment strategy. In general, the operational schemes under the SPW are:

a) Graduate Attachment Programme (GAP)

b) Environmental Beautification Training Scheme (EBTS)

c) Solar Energy Development Training Scheme (SETS)

d) Graduate Coaching Scheme (GCS).

The service department of the NDE includes; (a) Planning, Research and Statistics, (b) Human Resources Management, (c) Finance and Accounts (d) Inspectorate. Branches and units includes; (a) Collaboration Branch,(b) Job Centre, (c) Women Employment Branch, (d) Information and Public Relations, (e) Internal Audit, (f) Loans, Properties and Utilities and (g) Resource Centre & Library.
Table 2.7.1: Summary of NDE Programmes/schemes.

<table>
<thead>
<tr>
<th>Programme/Scheme</th>
<th>Loan</th>
<th>Training</th>
<th>Input Supply</th>
<th>Employment</th>
<th>Others.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocational Skills Development NOAS</td>
<td>32</td>
<td>73</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>119</td>
</tr>
<tr>
<td>SOW</td>
<td>29</td>
<td>35</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>VSPV</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>PIST</td>
<td>19</td>
<td>30</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>RLS</td>
<td>54</td>
<td>28</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>Small Scale Enterprises ES DT</td>
<td>9</td>
<td>34</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>MBST</td>
<td>44</td>
<td>59</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>EDP</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>ECF</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>WET</td>
<td>33</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>MEES</td>
<td>12</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>SMEES</td>
<td>26</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>Rural Employment Programme RADTS</td>
<td>36</td>
<td>68</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td>IFTS</td>
<td>35</td>
<td>61</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>RHTS</td>
<td>46</td>
<td>39</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>POST-RADTS</td>
<td>23</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Special Public Works GAP</td>
<td>16</td>
<td>17</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>EBTS</td>
<td>95</td>
<td>112</td>
<td>9</td>
<td>14</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>GCS</td>
<td>9</td>
<td>15</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>SETS</td>
<td>20</td>
<td>29</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

Source: Author’s compilation, 2018
2.8 THEORETICAL FRAMEWORK.

The theoretical framework on which this study is based includes the impact assessment concept and the theory of poverty caused by cumulative and cyclical interdependencies by Bradshaw (2006).

2.8.1 Impact Assessment Concept

Impact can be defined as a long-term influence on the State of the environment surrounding an organization (Sanginga et al., 1999). The impact of a programme can be seen in relation to what the programme actually has done to the people who participated. According to Patton (1978) it is the actual programme outcomes in relation to the desired outcomes (goals). Thus Gilbert et al., (1975) observed that social intervention may have more than one goal such as primary and secondary goals which may affect the choice of criteria in assessing its impact. In cases like these, more than one outcome can be used to measure the impact. The forces that interact to produce these changes are dependent on whether the impact of the programme may be positive or negative.

Impact Assessment is an evaluation aimed at identifying changes as a result of a programme by employing methods to establish plausible association between changes experienced and participation in the programme. The level and nature of participation should affect the impact of the programme. Impact assessment may link an institutional review of programme components, procedure with client level data to determine what is working well, and what can be improved upon (Barnes and Sebstad, 2000).

Outcome specification in an impact assessment mainly consists of two dimensions: desirability and plausibility (Chen and Rossi 1980 as cited by Chen 1990). The former reflects the anticipated or worthiness or benefits generated by the programme, while the latter concerns the broader more realistic questions of the potential impacts of the programme.
Most goal statements reflect questions pertaining to desirability dimension; for example, what good could this programme do instead of what outcomes will actually be generated by the programme. From the foregoing, it is observed that poverty alleviation programmes that are implemented need to yield specific result through targeting the vulnerable section of the society.

Generally speaking, in carrying out an impact assessment, the aim should not only be to assess whether goals are achieved but also with discovering what actually happened as a result of the programme. Critics such as Mushkin (1973) urge that, while undertaking an assessment, in order to enhance policy relevance, the scope of assessments should be broaden by investigating both intended and unintended consequences (Chen, 1990). It is argued that poverty is a social problem that affects communities and individuals. In theory, impact assessment is in a position to identify the cause of an outcome as it goes beyond the expected outcome and establish what the real outcome of the programme is.

In the context of this research, it is expected that the real outcomes of NDE programmes should be to reduce poverty by lowering unemployment levels especially amongst the vulnerable groups. Thus, it has gone beyond providing self-employment opportunities by also tackling the issue of poverty.

2.8.2 The Theory of Cumulative and Cyclical Interdependencies.

This study also borrowed from the Theory of Poverty caused by Cyclical and Cumulative interdependencies. This theory by Bradshaw (2006), is from a contemporary school of thought that views poverty from the perspective that individuals and their community as being caught in a spiral of opportunities and constraints, and that once problems dominate they close other opportunities and create a cumulative set of problems that make any effective response nearly impossible (Bradshaw, 2000). From the cyclical perspective, the individual
situation and community resources are mutually dependent. Mydral (1957) attests that the interdependence of factors creating poverty actually accelerates once a cycle of decline is started. In an attempt to define poverty, Sher (1977) looks at the cycle by which education and employment at the community and individual level interact to create a spiral of disinvestment and decline, while in advancing communities the same factors contribute to growth and well-being. Lack of employment opportunities leads to increased migration of educated people to the suburbs, low tax revenue which has in effect brought under development of the rural areas as the able bodied persons of the community migrate elsewhere. This again translates to decline in infrastructure and decline of service delivery. Consequently, underdevelopment of such areas leads back to greater unemployment.

At the individual level, the cycle manifests itself in the following. Unemployment reduces levels of consumption and spending in the poor households due to their meagre savings. This means that the individuals cannot invest in their future through education or training, hence lack the technical expertise to start income-generating activities such as businesses. Such a dire situation results to disinvestment of the locality, which consequently contributes to more inadequate community opportunities.

At the second level, the poor individual lacks the resources to invest in their children’s essential requirements such as education and proper medical care. Such children lack skill acquisition and status, which greatly influence the future labour force and productivity of the community in addition to being in poor health.

At the third level of the cycle of poverty, individuals are characterized by psychological problems such as apathy, deteriorating self-confidence, depression and lack of passion for life due to lack of jobs and income. These individuals form belief cultures that support sub
cultures of poverty. Thus, what one is socialized in sub cultures (attitudes, tendency, and behaviours) forms the basis for one’s response to life.

In conclusion, the cyclical theory shows how multiple problems cumulate, and it allows speculation, that if one of the linkages in the spiral was broken, the cycle would not continue. The problem is that the linkages are hard to break because each is reinforced by other parts of the spiralling system. The complexity of the cycle of poverty means that solutions need to be equally complex. A full step from poverty requires six interdependent elements of self-fulfilment that can be identified and tracked. These include income and economic assets, education and skills, housing and surroundings, access to health care and other social services, close personal ties, as well as networks to others, personal resourcefulness and leadership abilities (Miller, Mastuera, Chao, Sadowski, 2004). Miller argues that there is no way to help individuals from poverty without first increasing social capital among communities and subcultures of the poor. This then implies that promoting income generating opportunities to raise social capital for the poor such as the NDE programmes could serve as important stepping-stones for poverty reduction in Nigeria.
CHAPTER THREE

3.0 METHODOLOGY

3.1 INTRODUCTION

The methodology of research provides a plan and method through which the study will be carried out in a systematic and logical manner. This chapter therefore, discusses the research design, study area, research population, sample and sampling techniques, sources of data and the instruments for data collection, validity and reliability of the instrument, administration of research instruments, and the procedure for data analysis.

3.2 RESEARCH DESIGN

This means the structuring of investigations aimed at identifying variables and their relationship to one another. It is a type of design in which a group of people or items is studied by collecting data from only a few people or items considered representative of the entire group. The quasi-experimental research design is adopted in this study, which entails the generation of cross sectional data in respect of various parameters of household characteristics such as gender, occupation, household expenditure, income, among others from NDE beneficiaries. The research study set out to assess the extent to which NDE programmes have alleviated poverty in Gombe State and to provide vital information in order to extract the perceptions of beneficiaries of NDE programmes concerning the role that these programmes play in alleviating poverty.

For the purpose of this research, the data was sourced using primary data collection and was sourced through questionnaire administration. The questions were written down for the respondents to answer by writing their responses or ticking against the appropriate alternative. The interview gave the researcher the opportunity of having face-to-face
discussions with the respondents, and it gave the researcher the opportunity of asking follow-up questions that are not contained in the questionnaire.

3.3 STUDY AREA

The study was conducted in Gombe State. The State was created from Bauchi State during the State creation exercise of October 1st, 1996. The State is located between latitude 11°15' and 10.25N and longitude 11°10' and 11.167°E. The State has a total land area of 20,265 km² and a population of around 2, 587, 159 million (Census, 2006). In addition, Gombe State shares boundaries with Yobe State to the North, Adamawa and Taraba States to the South, Borno State to the East, and Bauchi State to the West.

The State comprises of eleven (11) Local Government Areas (LGAs) namely: Akko, Balanga, Billiri, Dukku, Funakaye and Gombe. Others are Kaltungo, Kwami, Nafada, Shongom and Yamaltu-Deba. In addition, the State comprises many tribal groups which include Tangale, Terawa, Waja, Kumo, Fulani, Kanuri, Bolewa, Jukun, Pero/Shonge, Tula, Cham, Lunguda, Dadiya, Banbuka, Hausa and Kamo/Awak. Hausa is the commercial language amidst the people.

Furthermore, the people of Gombe State are primarily farmers producing food and cash crops, and they include Cereal, Legumes, Fruits, Vegetables and Tree Crops. Industries in the State include Ashaka Cement Plc, cotton ginneries, furniture and block making industries, and other small-scale industries. Gombe is blessed with natural resources like Uranium, Gypsum, and Limestone.

3.4 RESEARCH POPULATION OF THE STUDY

The target population of the study comprises of the beneficiaries of NDE programmes. From records obtained from officials at the NDE, a list of nineteen thousand, five hundred and ninety-nine (19, 599) beneficiaries was obtained on all the four programmes since inception.
in the whole State. The Vocational Skills Development Programme had 14,305; the Small Scale Enterprise Programme 300; the Rural Employment Promotion Programme 2879 and the Special Public Works Programme had 2,115 beneficiaries.

3.5 SAMPLE AND SAMPLING TECHNIQUE

The study adopted a multi-stage sampling technique in order to ensure spread of respondents across programmes and locations. In the first stage, two locations were selected using stratified sampling, based on the three senatorial districts, namely: in Gombe North Senatorial District; Gombe and Funakaye LGAs; Gombe Central Senatorial District; Akko and Yamaltu-Deba LGAs; and lastly, Gombe South Senatorial District; Billiri and Kaltungo LGAs were selected. This is to enable the researcher get access to a sufficient number of respondents that have access to the training centers located in each of the senatorial zones.

Respondents from each of the selected location were then selected purposefully from each stratum in which the research assistants in the three senatorial districts administered each 67 questionnaires.

The sample size for the research was chosen using “Yamane” Formula for sampling a finite population. The formula provides a good medium for sampling a manageable size of the population. The formula is given as:

\[n = \frac{N}{1 + N(e)^2} \]

Where:

\(n \) = the sample size

\(N \) = the finite population

\(e \) = level of significance (limit of tolerable error)
1 = a constant (unity)

Note: e for this study = 0.05 or 5%

Using the number of beneficiaries of 19,599, the sample size obtained is;

\[n = \frac{19599}{1 + 19599(0.05)^2} \]

n = 400

Hence, the sample size of 400 respondents in the study areas is obtained from the total number of the beneficiaries of the four NDE programmes using the above formula in the selected LGAs.

3.6 SOURCES OF DATA AND INSTRUMENTS FOR DATA COLLECTION

The source of data for a research is grouped into two, namely; primary sources and secondary sources. However, for this research, the primary data is the basis of the study. The data was generated by a means of a structured questionnaire instrument and the questionnaire is divided into two sections; the first section collected the personal data of the respondents while the second section focused on the subject matter of the study based on the research questions raised. The study area was structured into three strata based on senatorial districts and a cross-sectional data set was sourced from each of the stratum (i.e. Gombe, Funakaye, Akko, Yamaltu-Deba, Billiri and Kaltungo Local Government Areas) using this instrument. This enabled the researcher to locate beneficiaries clustered around the three training centers of the NDE, which are the Bajoga center in the Gombe North Senatorial district; the Dadin Kowa center in the Gombe Central senatorial district and the Kaltungo center in the Gombe South Senatorial district. The aim of using this kind of data set is to take advantage of sampling a host of individuals at a given point in time.
3.7 VALIDITY AND RELIABILITY OF THE INSTRUMENT

The questionnaire was first of all, piloted using an identical sample of 18 NDE beneficiaries, and this was undertaken to appraise the instrument revealing any clustered questions, vague and wrong phrasing of questions. Unclear items such as questions on programmes that beneficiaries participated in, for there were beneficiaries that engaged in more than one programme at a time, their average income, etc, were reviewed, reconstructed and adjustments done to the final questionnaire. This also enabled the researcher to establish the validity and reliability of the research instrument.

Validity refers to the degree with which a research instrument measures what it aims to measure as well as the population it is intended for. It refers to the truthfulness of the instrument and population of study. It implies that it should measure the characteristics it is intended to measure. The validity test was used in this research to measure the extent to which the instrument measures the overall appearance and subject matter in line with the set objectives of the study. In other words, the items set or statements should reflect the purpose of the stated problem of the research study (objectives). In carrying out the test, expert opinion was obtained from researchers (Supervisors) who have undertaken past studies in evaluating the relevance of the items to the characteristics being measured. Face validity was established by getting expert opinions of those that assessed that initial draft of the instrument in terms of content coverage, relevance of questions to research questions and language used in developing the items.

Reliability on the other hand, is the degree of stability of variables or research instruments. Ondeng (2000) refers reliability to the question of whether a measuring instrument or process can produce the same result if successively employed by different researchers. It is a measure
of how consistent the result from a test is and it involves the accuracy of the research methods and techniques.

For the case of this research concerning an assessment of the impact of NDE programmes on poverty reduction, collected information were reliable and valid because the researcher was careful in collecting, analysing and processing data from the respondents, the researcher was explicit, unambiguous and less complicated when formulating a questionnaire. In addition, the use of purposive sampling allowed the researcher to select the respondents based on the knowledge of the population, its elements and research objectives. The researcher asked questions that were relevant to the study.

3.8 ADMINISTRATION OF RESEARCH INSTRUMENT

A written structural questionnaire was administered to the beneficiaries. However, it was not feasible for some beneficiaries to be captured in the sample as well as for the researcher alone to cover the study areas at a given time period. Thus, research assistants were hired to help in administering the questionnaires, which was translated into Hausa and Fulani languages of the beneficiaries for easy response.

3.9 VARIABLES MEASUREMENT

This research is concerned with the impact of NDE programmes on poverty reduction, income and standard of living in Gombe State. The dependent variables that were captured in the model were measured as;

Poverty Status which was measured as dummy or categorical variable with 0 representing beneficiary household is poor and 1 if the beneficiary household is non-poor. The World Bank’s Poverty Line Index set at $1.25 per day was used as a benchmark to measure the level of poverty. That is, those whose income per day is below the Index were regarded as poor.
and those people that earn $1.25 and above per day were categorized as non-poor as done by Kasali, Ahmad & Lim (2015).

Income was measured in naira (N360 to $1) as the earnings of the beneficial respondents. It was expected that the higher the respondents’ income, the higher the standard of living. An income increase will be measured as 1 and otherwise as 0.

Standard of Living was measured by ownership and sustainable access to resources aimed at meeting the basic need of the respondents (food, water supply, shelter and healthcare services). It was measured as 1 = has access; 0 = otherwise.

Assets were measured by ownership of properties such as land, house, vehicles and livestock of the respondents and an increase in assets indicates that the beneficiary has acquired more assets as a result of the programmes. It was measured as 1 when there is an increase and 0 otherwise.

Consumption expenditure was measured as the expenses on household items by the respondent and an increase indicates that consumption expenditure has risen due to benefits derived from the programme. It was measured as 1 when there is an increase and 0 otherwise.

New/expanded Enterprise was measured as the respondents having the opportunity to establish a business or expand an existing one as a result of participating in NDE programmes. It was measured as 1 when enterprise is established or expanded and 0 otherwise.

The independent variables that were captured in the model are the four programmes undertaken by the NDE and were measured as;

VSD which is the vocational skills development programme and was measured in five categories representing 1 = NOAS (national open apprenticeship scheme), 2 = SOW (school
on wheels), 3 = VSPV (vocational skills for physically challenged and vulnerable persons), 4 = RLS (resettlement loan scheme), 5 = PIST (partnership in skills training).

SSE which is the small-scale enterprise programme and was measured in seven categories 1 = ESDTS (enterprise start-up and development training scheme), 2 = MBST (micro business skills training scheme), 3 = EDP (entrepreneurship development programme), 4 = ECF (enterprise creation fund), 5 = WET (women employment training), 6 = MEES (micro enterprise empowerment scheme), 7 = SMEES (special micro enterprises empowerment scheme).

REP which is the rural employment promotion programme and was measured in four categories 1 = RADTS (rural agricultural development training scheme), 2 = IFTS (integrated farming and training scheme), 3 = RHTS (rural handicrafts training scheme), 4 = POST-RADTS (post-rural handicrafts training scheme).

SPW which is the special public works programme and was measured in four categories 1 = GAP (graduate attachment programme), 2 = EBTS (environmental beautification training scheme), 3 = GCS (graduate coaching scheme), 4 = SETS (solar energy training scheme).

It is expected that these programmes would positively affect the dependent variables, as they are intervention programmes targeted at reducing the incidence of poverty.

3.10 METHOD OF DATA ANALYSIS

The analysis of this study was done based on the objectives stated in chapter one; First, the study began with a descriptive statistics of the data using frequencies, percentages and tables in presenting the socio-economic characteristics of the respondents. This is in line with the first objective and is specified as:

\[SP = \frac{X}{N} \times 100 \]

(3.2)
Where:

SP = Simple Percentage

X = Required number of outcome

N = Total number of observation

In the second and third objectives, which is captured by hypothesis 1, 2 and 3, the dependent variables are categorical, the ordinary least square (OLS) method can no longer be used as the best linear unbiased estimator (Gujarati, 2013). Following the work of Iqbal and Akhtar (2015), the Logit Regression Model (LRM) was used for the analysis of the data as best linear unbiased estimator. The statistical model for logistic regression is:

\[
\left\{ P \left(y = \frac{1}{x} \right) \right\} = \beta_0 + \beta X_i
\]

Where:

P (y = 1/x) = Probability of the outcome

Y = Response

X_i = Vector of explanatory variables

\(\beta_0 \) = Intercept of the equation.

\(\beta \) = Vector of parameters to be estimated

3.11 MODEL SPECIFICATION

Based on the literature reviewed, a very notable and related model to this study is that of Obike, Ukoha & Nwajiuba (2007). In examining the impact of NDE on poverty reduction among farmers in Abia State, Nigeria, the authors used a logistic model to regress role of
NDE on poverty reduction and other control variables. Adopting this pattern, we specified the following logistic model with slight changes. The dependent variable S_i takes the value of one or zero.

3.11.1 Model 1: NDE Programmes

$$Pr(S_i = 1/0) = \beta_0 + \beta_1 VSD + \beta_2 SSE + \beta_3 REP + \beta_4 SPW + \mu_i$$ \hspace{1cm} (3.4)

Where:

P_i ($S_i = 1/0$) = Probability of Poverty status/Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise.

β_0 = the constant parameter of the equation

β_n = the coefficient of the independent variables

VSD = Vocational skills development programme

SSE = Small scale enterprise programme

REP = Rural employment promotion programme

SPW = Special public works programme

μ_i = Error term

The models enable us to determine the impact of each of the five NDE Programmes on the poverty status (and Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise) of the respondents. Each of the βs measures the change in the probability that a given respondent is poor after participating in the respective NDE programme.
From model 1, the various schemes under each programme can also be specified to regress
the significant impact of each scheme under the four major programmes on the dependent
variables;

3.11.2 Model 2 (Type 1) Vocational Skills Development Programme (VSD):

\[\text{Pr}(S_i = \frac{1}{0}) = \beta_0 + \beta_{\text{NOAS}} + \beta_{\text{SOW}} + \beta_{\text{VSPV}} + \beta_{\text{RLS}} + \beta_{\text{PIST}} + \mu_i \] \hspace{1cm} (3.5)

Where

\(P_i (S_i = 1/0) \) = Probability of Poverty Status/Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise.

\(\beta_0 \) = the constant parameter of the equation

\(\beta_n \) = the coefficient of the independent variables

NOAS = National Open Apprenticeship scheme

SOW = School-on-wheels

VSPV = Vocational skills for physically challenged and vulnerable persons

RLS = Resettlement loan scheme

PIST = Partnership in skills training

\(\mu_i \) = Error term

3.11.3 (Type 2) Small-Scale Enterprises (SSE):

\[\text{Pr}(S_i = \frac{1}{0}) = \beta_0 + \beta_{\text{ESDTS}} + \beta_{\text{MBST}} + \beta_{\text{EDP}} + \beta_{\text{ECF}} + \beta_{\text{WET}} + \beta_{\text{MEES}} + \beta_{\text{SMEES}} + \mu_i \] \hspace{1cm} (3.6)
Where

\(P_r (S_i = 1/0) = \text{Probability of Poverty status/Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise.} \)

\(\beta_0 = \text{the constant parameter of the equation} \)

\(\beta_n = \text{the coefficient of the independent variables} \)

ESDTS = Entrepreneurship skills development training

MBST = Micro-business-start-up training

EDP = Entrepreneurship development programme

ECF = Enterprise creation fund

WET = Women employment training

MEES = Micro enterprise empowerment scheme

SMEES = Special micro enterprises empowerment scheme

\(\mu_i = \text{Error term} \)

3.11.4 (Type 3) Rural Employment Programme (REP):

\[
Pr(S_i = \frac{1}{0}) = \beta_0 + \beta_n RADTS + \beta_n IFTS + \beta_n RHTS + \beta_n POST + RADTS + \mu_i = \ldots \ldots (3.7)
\]

Where

\(P_r (S_i = 1/0) = \text{Probability of Poverty status/Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise.} \)

\(\beta_0 = \text{the constant parameter of the equation} \)
βₙ = the coefficient of the independent variables

RADTS = Rural agricultural development training scheme

IFTS = Integrated farming and training scheme

RHTS = Rural handicrafts training scheme

POST-RADTS = Post-Rural agricultural development training scheme

µᵢ = Error term

3.11.5 (Type4) Special Public Works (SPW):

Pr(Sᵢ = 1/0) = β₀ + βₙGAP + βₙEBTS + βₙGCS + βₙSETS + µᵢ ------- (3.8)

Where

Pᵢ (Sᵢ = 1/0) = Probability of Poverty status/Income/Standard of living/Assets/Consumption expenditure/New or Expanded enterprise.

β₀ = the constant parameter of the equation

βₙ = the coefficient of the independent variables

GAP = Graduate attachment programme

EBTS = Environmental beautification training scheme

GCS = Graduate coaching scheme

SETS = Solar energy training scheme

µᵢ = Error term
3.12 CONCEPTUAL FRAMEWORK AND MODEL

Emanating from the impact assessment concept, the following model was conceptualized for the study as shown in Figure 3.1. The conceptual model used in this study is the Wisconsin logic model. A logic model is a systematic and visual way to present and share our understanding of the relationships among the resources available in operating programmes or projects. It is presented in the form of a simplified chart that gives an overview of a programme. In addition, it helps to identify what are expected to happen and when. It therefore, provides a pathway or road map for measuring progress (Powell et.al.,1996)

The components of a logic model consist of;

- Inputs: These are the resources dedicated or used by the programme. In this study the inputs are financial resources, NDE staff, participants/beneficiaries, facilities, equipment and supplies.

- Outputs: These are the direct product of program activities, which are what the programme does with the inputs. In order words, they are the strategies and techniques that make up the programme’s service methodology. It is hoped that by undertaking activities, changes or results will be brought about. Also the target group which comprises of programme beneficiaries or participants are identified.

- Outcomes: These are the results of the programme. They are the changes that take place during or after the programme for individuals, groups, communities or organizations. These changes can take place over the short, intermediate or long term. Long term outcomes are sometimes referred to as impacts.
<table>
<thead>
<tr>
<th>Problem Statement</th>
<th>High level of absolute poverty especially in rural areas, Unemployment rate is high and contributes significantly to high poverty levels. Research has shown that human capital and credit are factors that affect poverty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>Business capital, vocational skills, handicrafts, trades, farming implements, NDE staff, trainers, trainees, loans, skills acquisition centers, job centers, etc.</td>
</tr>
<tr>
<td>Activities:</td>
<td>Vocational skills development (National Open Apprenticeship Scheme, School-on-wheels, Community based training scheme, Resettlement loan scheme, Partnership in skills training). Small scale enterprises (Entrepreneurship skills development training, Micro business-start-up training, Entrepreneurship development programme, Enterprise creation fund, Women employment training, Micro enterprise empowerment scheme, Special micro enterprise empowerment scheme). Rural employment promotion programme (Rural agricultural development training scheme, Integrated farming and training scheme, Rural handicrafts training scheme, Post-rural agricultural development training scheme). Special public works (Graduate attachment programme, Environmental beautification training scheme, Graduate coaching scheme, Solar energy training scheme).</td>
</tr>
<tr>
<td>Target Group:</td>
<td>School leavers and School drop-outs NYSC members, unemployed graduates, retirees and artisans. Farmers, unemployed youths and women</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Higher income levels, better standards of living, higher consumption expenditures, increase in assets, tackles graduate unemployment, decreases rural-urban drift, lowers poverty levels, wealth creation, improved agro-based and agro-allied industries, promote non-farm rural employment and women empowerment.</td>
</tr>
</tbody>
</table>

Source: NDE Annual Report, 2014 and Author’s compilation
FIGURE 3.1: The Wisconsin logic model
Source: Author’s conception, 2018.

Problem Statement
High unemployment rate, low incomes, and high levels of absolute poverty.

Inputs
Business capital
Skills acquisition centers
Loans
Vocational skills
Handicrafts and trades
Farming implements
NDE staff
Trainers, trainees

Outputs
Activities
Vocational skills development (NOAS, SOW, VSPV, RLS, PIST).

Outcomes
Activities
School leavers and School drop-outs

Activities
Small scale enterprises (ESDTS, MBST, EDP, ECF, WET, MEES, SMEES)

Activities
Rural employment promotion programme (RADTS, IFTS, RHTS, POST-RADT).

Activities
Special public works (GAP, EBTS, GCS, SETS).

Activities
Unemployed youths and unemployed graduates.

Activities
NYSC members, graduates, retirees and artisans

Activities
Farmers, unemployed youths and women.

Activities
Unemployed youth and unemployed graduates.

Activities
Tackles graduate unemployment, wealth creation, increases income levels for those in informal sector and poverty level falls in the longer term.

Activities
Decreased rural-urban drift, improved agro-based and agro-allied industries, promote non-farm rural employment, and reduces poverty among rural dwellers.

Activities
Higher income levels, better standards of living, higher consumption expenditures, increase in assets, lowers poverty levels among the unemployed.
CHAPTER FOUR

4.0 DATA ANALYSIS, INTERPRETATION AND DISCUSSION OF RESULTS

4.1 INTRODUCTION

This chapter covers aspects of the analysis of data collected, interpretation and discussion of results, in order to assess the impact of NDE programmes on poverty alleviation in Gombe State. This chapter includes five parts beginning with this introduction, secondly data analysis consisting of descriptive analysis, the third and fourth parts deals with interpretation of both descriptive and inferential analysis, and lastly the discussion of results.

4.2 DATA ANALYSIS

The descriptive analyses provided are in line with the first objective, which captures the socio-economic characteristics of the respondents. The researcher with the help of six research assistants administered 400 questionnaires to beneficiaries that were trained at the Bajoga, Dadin Kowa and Kaltungo training centers of the NDE. Data was obtained from 374 valid questionnaires out of 400 administered, which is a good rate of return and sufficient for data analysis in the study.
TABLE 4.2.1: Socio-economic Characteristics of Respondents.

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex of Respondent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>228</td>
<td>61.0</td>
</tr>
<tr>
<td>Male</td>
<td>146</td>
<td>39.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Age of Respondent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 18</td>
<td>35</td>
<td>9.4</td>
</tr>
<tr>
<td>18-30</td>
<td>204</td>
<td>54.5</td>
</tr>
<tr>
<td>31-50</td>
<td>100</td>
<td>26.7</td>
</tr>
<tr>
<td>51-70</td>
<td>35</td>
<td>9.4</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Marital Status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>152</td>
<td>40.6</td>
</tr>
<tr>
<td>Married</td>
<td>180</td>
<td>48.1</td>
</tr>
<tr>
<td>Widow/Widower</td>
<td>17</td>
<td>4.5</td>
</tr>
<tr>
<td>Divorced</td>
<td>25</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Household Head:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>76</td>
<td>20.3</td>
</tr>
<tr>
<td>Father</td>
<td>217</td>
<td>58.0</td>
</tr>
<tr>
<td>Others</td>
<td>81</td>
<td>21.7</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Household Size:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 2</td>
<td>86</td>
<td>23.0</td>
</tr>
<tr>
<td>2-4</td>
<td>177</td>
<td>47.3</td>
</tr>
<tr>
<td>5-7</td>
<td>40</td>
<td>10.7</td>
</tr>
<tr>
<td>8-10</td>
<td>58</td>
<td>15.5</td>
</tr>
<tr>
<td>Above 10</td>
<td>13</td>
<td>3.5</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Educational Level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Formal Education</td>
<td>81</td>
<td>21.7</td>
</tr>
<tr>
<td>Uncompleted Education</td>
<td>20</td>
<td>5.3</td>
</tr>
<tr>
<td>Primary Education</td>
<td>20</td>
<td>5.3</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>155</td>
<td>41.4</td>
</tr>
<tr>
<td>Post Secondary Education</td>
<td>98</td>
<td>26.2</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Major Occupation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farming</td>
<td>135</td>
<td>36.1</td>
</tr>
<tr>
<td>Trading</td>
<td>131</td>
<td>35.0</td>
</tr>
<tr>
<td>Civil Servant</td>
<td>42</td>
<td>11.2</td>
</tr>
<tr>
<td>Retired</td>
<td>25</td>
<td>6.7</td>
</tr>
<tr>
<td>Others</td>
<td>41</td>
<td>11.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.3. INTERPRETATION OF DESCRIPTIVE STATISTICS RESULTS

4.3.1. Gender distribution of the Respondents

The results in Table 4.2.1 shows that out of the 374 respondents, 228 are female and 146 are males. Thus, majority of the beneficiaries are female at 61% while males consisted of 39% of the beneficiaries. This indicates that women dominated in all the four programmes of the NDE given the fact that they are more vulnerable to poverty than their male counterparts are.

4.3.2. Age of the Respondents

Results show that age of the respondents have a majority of 204 youths consisting of those who fall under the age bracket of 18-30 years followed by the adult population of 31-50, constituting of 100 beneficiaries at 54.3% and 26.6% respectively. The younger and elderly populations of below 18 and 51-70 age bracket have 35 beneficiaries each at 9.4%; this attests to the fact that many unemployed youths unable to get employment in formal public and private agencies, engage in NDE programme as an alternative of getting a means of livelihood.

4.3.3. Marital Status of the Respondents

It is evident from the table that 48.1% of the beneficiaries are married (180), 40.6% are single (152), while the widowed and divorced consisted of only 4.5% (17) and 6.7% (25) respectively. Given that majority of the respondents are women within the youth population presumably married at that age, they are most at times unemployed or with little formal education, so they are usually restricted to getting any form of income or employment from informal sector activities which is the nature of most of the programmes undertaken by the NDE.
4.3.4. Household Head

The results for the analysis of household head shows that 217 respondents have a male headed household i.e. 58%, 81 respondents have households that are headed by others (which represents either a guardian, relative or an associate of the respondent) consisting of about 21.5% of the population and 76 have households headed by a mother at about 20.3%. This feature exhibits the nature of the culture inherent in the study area where male dominated households prevail. In addition, households headed by other non-family members maybe due to assistance given to a household because of poverty or lack of a household head that they could depend on for a source of livelihood.

4.3.5. Household Size

Findings revealed that majority of the respondents have smaller households of 2–4 persons consisting of 177 (47.1%) of the population, followed by households of less than 2 persons at 23% with a population of 86 then 40 respondents have households of 5–7 people consisting of 10.7%. About 15.5% (58) and 3.5% (13) of the respondents come from larger households of 8–10 and above 10 people respectively. These findings indicate that most of the respondents from small households are either single living on their own or just starting a family given that already majority of the respondents are of the young adult population.

4.3.6. Educational Level

The level of education of respondents shows that 41.4% (155) have secondary education, 26.2% (98) have post-secondary education, and 21.7% (81) have no formal education while the respondents with primary education and uncompleted education each consist of 5.3% (20) of the population. This shows the desire of the respondents to have an early start in the labour market due to poverty which might have hindered their ability to pursue tertiary education or
to overcome idleness and also, some of the elderly population that aspire to engage in
entrepreneurial activities after retirement.

4.3.7. Major Occupation

This result shows that a large proportion of the beneficiaries are farmers at 36.1% (135), 35%
(131) are traders, 11.2% (42) are civil servants, 6.7% (25) are retired and 11% (41) belong to
the unemployed or vulnerable groups. This findings shows that most are farmers and traders
who are the majority in the study area and thus, usually source for funds to further expand
their activities through the various NDE programmes aimed at agriculture and trading.

In summary, therefore, either the model respondent is most likely to be a female of less than
50 years that is married or single with a small-sized household and of secondary education or
less that is either in trade or in farming. This description fits the group of people that are
considered vulnerable, and are mostly poor in Nigeria. People of this description are those
that are unlikely to succeed in the free labour market without assistance. This implies that the
NDE in Gombe State succeeded in targeting the right group as beneficiaries for their
employment programmes.

4.4. INTERPRETATION OF REGRESSION ANALYSIS RESULTS

4.4.1. Interpretation of Logistic Regression Results (Model 1):

In the Logit Models presented, the dependent variables poverty status, income, standard of
living, assets, consumption expenditure and new/expanded business are used as dichotomous
variables, each of which has two outcomes. These variables are regressed on a set of
explanatory variables (NDE programmes) and the results of binary logistic models are shown
in the following tables. The objective of which is to determine the impact of the different
covariates on the probability of being poor, having a change in income and living standards
among others.
The positive values of the regression coefficients show that the higher the value, the higher is the likelihood of that variable having an impact, i.e., “more likely” to have an impact. The negative values show that the higher the value, the lower the likelihood, i.e., “less likely” to have an impact. In addition, the odds ratio can be used to show the probabilities of which of the covariates are more or less likely to influence an impact on the dependent variables. When probability fails to reach the 5% significance level (at $p < 0.05$), we reject the null hypothesis, which states that the independent variables is significant in predicting the dependent variables.

4.4.2. Impact of NDE Programmes on Poverty

TABLE 4.2.2.: Regression One - NDE Programme (Poverty Status)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.669</td>
<td>0.613</td>
<td>18.946</td>
<td>0.000</td>
<td>14.432</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.111</td>
<td>0.099</td>
<td>1.260</td>
<td>0.262</td>
<td>0.895</td>
</tr>
<tr>
<td>SSE</td>
<td>0.053</td>
<td>0.084</td>
<td>0.402</td>
<td>0.526</td>
<td>1.055</td>
</tr>
<tr>
<td>REP</td>
<td>-0.066</td>
<td>0.175</td>
<td>0.141</td>
<td>0.707</td>
<td>0.936</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.198</td>
<td>0.170</td>
<td>1.342</td>
<td>0.247</td>
<td>0.821</td>
</tr>
<tr>
<td>N</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X^2 value</td>
<td>3.687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s Computation (2018).

Results from Table 4.2.2 shows that none of the independent variables are statistically significant, hence, collectively, the NDE programmes do not have any significant impact on the poverty status of the beneficiaries. Therefore, the first null hypothesis stating that NDE programmes have not significantly reduced poverty in the study area is accepted and the alternative rejected.

It can be observed that the Pseudo R^2 value is 0.018 indicating that approximately 1.8% of the variations in dependent variables are explained by the explanatory variables and
represents a weak relationship between them. The Chi\(^2\) value shows that the model is a good fit.

4.2.3. Impact of NDE Programmes on Income

TABLE 4.2.3: Regression Two - NDE Programmes (Income)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.143</td>
<td>0.542</td>
<td>4.448</td>
<td>0.035</td>
<td>3.135</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.065</td>
<td>0.096</td>
<td>0.456</td>
<td>0.500</td>
<td>0.937</td>
</tr>
<tr>
<td>SSE</td>
<td>0.276**</td>
<td>0.089</td>
<td>9.628</td>
<td>0.002</td>
<td>1.317</td>
</tr>
<tr>
<td>REP</td>
<td>0.258</td>
<td>0.174</td>
<td>2.216</td>
<td>0.137</td>
<td>1.295</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.269</td>
<td>0.156</td>
<td>2.981</td>
<td>0.084</td>
<td>0.764</td>
</tr>
<tr>
<td>N</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X^2) value</td>
<td>19.544***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R(^2)</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant at 5% (**); 1% (***) critical level

Source: Author’s Computation (2018)

It can be seen from the results of the analysis of regression 2 that the coefficient on SSE is positive and statistically significant at 5% critical level. This means that the Small Scale Enterprise programme of the NDE in Gombe has increased the probability of having increased income by a participant. This, therefore, suggests that there is a significant relationship between SSE and income and that *beneficiaries of the SSE programme are more likely to have an increase in their incomes after participating in the programme*. The SPW, VSD and REP are statistically insignificant and do not have any impact on income. Therefore, the second null hypothesis is rejected and the alternative hypothesis stating that NDE programmes have significantly affected income of the beneficiaries in the study area is accepted.

The Pseudo R\(^2\) value is 0.088 indicating that approximately 8.8% of the variations in dependent variables are explained by the explanatory variables and represents a strong relationship between them. The Chi\(^2\) value is significant at 1% value, which shows that the model is a poor fit.
4.2.4. Impact of NDE Programmes on Standard of Living

TABLE 4.2.4: Regression Three - NDE Programme (Standard of Living)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.501</td>
<td>0.513</td>
<td>23.781</td>
<td>0.000</td>
<td>12.193</td>
</tr>
<tr>
<td>VSD</td>
<td>0.124</td>
<td>0.084</td>
<td>2.189</td>
<td>0.139</td>
<td>1.132</td>
</tr>
<tr>
<td>SSE</td>
<td>-0.049</td>
<td>0.066</td>
<td>0.557</td>
<td>0.456</td>
<td>0.952</td>
</tr>
<tr>
<td>REP</td>
<td>-0.014</td>
<td>0.144</td>
<td>0.010</td>
<td>0.920</td>
<td>0.986</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.551***</td>
<td>0.143</td>
<td>14.917</td>
<td>0.000</td>
<td>0.577</td>
</tr>
</tbody>
</table>

N: 374

X² value: 18.121***

Significant at 1% (***) critical level

Source: Author’s Computation (2018).

Findings from regression three shows that only SPW is statistically significant at 1% level and is inversely associated with standard of living. This suggests that *benefactors of this programme are less likely to have an improvement in their living standards because of participating in the SPW programme*. The other three programmes however, are not significant and do not have an impact on standard of living. Therefore, the third null hypothesis is rejected and the alternative hypothesis stating that NDE programmes have significantly affected the standard of living of the beneficiaries in the study area is accepted.

The Pseudo R² value of 0.073 indicates that approximately 7.3% of the variations in dependent variables are explained by the explanatory variables and this represents a moderately strong relationship between them. The Chi² value shows that the model is a poor fit at 1% level.
TABLE 4.2.5: Regression Four– NDE Programme (Assets)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>3.317</td>
<td>0.571</td>
<td>33.798</td>
<td>0.000</td>
<td>27.568</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.140</td>
<td>0.088</td>
<td>2.534</td>
<td>0.111</td>
<td>0.870</td>
</tr>
<tr>
<td>SSE</td>
<td>-0.067</td>
<td>0.073</td>
<td>0.847</td>
<td>0.357</td>
<td>0.935</td>
</tr>
<tr>
<td>REP</td>
<td>0.244</td>
<td>0.157</td>
<td>2.423</td>
<td>0.120</td>
<td>1.276</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.695***</td>
<td>0.150</td>
<td>21.466</td>
<td>0.000</td>
<td>0.499</td>
</tr>
</tbody>
</table>

\[N = 374 \]
\[\chi^2 \text{ value} = 24.263*** \]
\[\text{Pseudo } R^2 = 0.102 \]

Significant at 1% (***), critical level
Source: Author’s Computation (2018).

Similarly, this result also suggests that SPW is the only variable that is statistically significant at 1% level and is inversely related to more assets. *The beneficiaries of this programme are less likely to acquire more assets because of participating in the programme.* The other covariates are statistically insignificant and do not have an impact on the acquisition of more assets.

The Pseudo R^2 value of 0.102 indicates that approximately 10.2% of the variations in dependent variables are explained by the explanatory variables and this represents a very strong relationship between them. The χ^2 value shows that the model is a poor fit at less than 1% level.

TABLE 4.2.6: Regression Five - NDE Programmes (Consumption Expenditure)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.220</td>
<td>0.539</td>
<td>16.934</td>
<td>0.000</td>
<td>9.204</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.087</td>
<td>0.088</td>
<td>0.965</td>
<td>0.326</td>
<td>0.917</td>
</tr>
<tr>
<td>SSE</td>
<td>0.002</td>
<td>0.073</td>
<td>0.001</td>
<td>0.974</td>
<td>1.002</td>
</tr>
<tr>
<td>REP</td>
<td>0.354**</td>
<td>0.161</td>
<td>4.835</td>
<td>0.028</td>
<td>1.425</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.488***</td>
<td>0.150</td>
<td>10.657</td>
<td>0.001</td>
<td>0.614</td>
</tr>
</tbody>
</table>

\[N = 374 \]
\[\chi^2 \text{ value} = 14.367** \]
\[\text{Pseudo } R^2 = 0.062 \]

Significant at 5% (**); 1% (***) critical level
Source: Author’s Computation (2018).
The variable REP is statistically significant at 5% level and is positively related to consumption expenditure. This suggests that beneficiaries of the REP programme are more likely to have an increase in their consumption expenditure by engaging in the programme. The SPW is on the other hand, is also statistically significant at 1% level and is inversely related to increased consumption expenditure. This suggests that beneficiaries of this programme are less likely to have an increase in their consumption expenditure. The VSD and SSE are not significant and do not have any impact.

The Pseudo R^2 value of 0.062 indicates that approximately 6.2% of the variations in dependent variables are explained by the explanatory variables and this represents a good relationship between them. The Chi2 value shows that the model is a poor fit at 1% level.

TABLE 4.2.7: Regression Six - NDE Programme (New/Expanded Enterprise)

<table>
<thead>
<tr>
<th></th>
<th>B-coefficient</th>
<th>Std. Error</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.160</td>
<td>0.558</td>
<td>14.964</td>
<td>0.000</td>
<td>8.667</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.131</td>
<td>0.093</td>
<td>1.988</td>
<td>0.159</td>
<td>0.877</td>
</tr>
<tr>
<td>SSE</td>
<td>0.124</td>
<td>0.081</td>
<td>2.361</td>
<td>0.124</td>
<td>1.132</td>
</tr>
<tr>
<td>REP</td>
<td>0.204</td>
<td>0.167</td>
<td>1.485</td>
<td>0.223</td>
<td>1.226</td>
</tr>
<tr>
<td>SPW</td>
<td>-0.387*</td>
<td>0.154</td>
<td>6.292</td>
<td>0.012</td>
<td>0.679</td>
</tr>
<tr>
<td>N</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X^2 value</td>
<td>12.589*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant at 10% (*) critical level
Source: Author’s Computation (2018)

Results from the table shows that only SPW is statistically significant at 10% level and is inversely related to new or expanded business. This indicates that beneficiaries of this programme are less than likely to be able to acquire a new business or expand an existing one. The other variables are not statistically significant and therefore do not have any impact on new or expanded business.
The Pseudo R^2 value of 0.057 indicates that approximately 5.7% of the variations in dependent variables are explained by the explanatory variables and this represents a good relationship between them. The Chi2 value shows that the model is a poor fit at 10% level.

4.4.5. Interpretation of Logistic Regression Results (Model 2):

The analysis for this model is a breakdown of each of the four main NDE programmes into their various sub-schemes. Here, these findings reveal the individual impact of these sub-schemes on the dependent variables.

TABLE 4.2.8: Type 1 (VSD)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.282</td>
<td>0.331</td>
<td>47.628</td>
<td>0.000</td>
<td>9.799</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.124</td>
<td>0.095</td>
<td>1.707</td>
<td>0.191</td>
<td>0.884</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.793</td>
<td>0.291</td>
<td>37.969</td>
<td>0.000</td>
<td>6.009</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.034</td>
<td>0.087</td>
<td>0.153</td>
<td>0.696</td>
<td>0.966</td>
</tr>
<tr>
<td>Standard of living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.001</td>
<td>0.245</td>
<td>16.650</td>
<td>0.000</td>
<td>2.722</td>
</tr>
<tr>
<td>VSD</td>
<td>0.109</td>
<td>0.079</td>
<td>1.920</td>
<td>0.166</td>
<td>1.115</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.785</td>
<td>0.279</td>
<td>41.013</td>
<td>0.000</td>
<td>5.961</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.108</td>
<td>0.081</td>
<td>1.774</td>
<td>0.183</td>
<td>0.897</td>
</tr>
<tr>
<td>Consumption expenditure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.658</td>
<td>0.276</td>
<td>36.102</td>
<td>0.000</td>
<td>5.250</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.047</td>
<td>0.083</td>
<td>0.328</td>
<td>0.567</td>
<td>0.954</td>
</tr>
<tr>
<td>New/expanded business</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.999</td>
<td>0.300</td>
<td>44.449</td>
<td>0.000</td>
<td>7.382</td>
</tr>
<tr>
<td>VSD</td>
<td>-0.110</td>
<td>0.087</td>
<td>1.611</td>
<td>0.204</td>
<td>0.896</td>
</tr>
</tbody>
</table>

Source: Author’s Computation (2018)

Results from table 4.2.8 indicate that the VSD programme is not statistically significant for all dependent variables and therefore does not make any impact on any of them. This result concurs with that of Model 1.
TABLE 4.2.9: Type 2 (SSE)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.752</td>
<td>0.306</td>
<td>32.810</td>
<td>0.000</td>
<td>5.768</td>
</tr>
<tr>
<td>SSE</td>
<td>0.047</td>
<td>0.078</td>
<td>0.367</td>
<td>0.544</td>
<td>1.049</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.748</td>
<td>0.276</td>
<td>7.364</td>
<td>0.007</td>
<td>2.112</td>
</tr>
<tr>
<td>SSE</td>
<td>0.304***</td>
<td>0.085</td>
<td>12.734</td>
<td>0.000</td>
<td>1.355</td>
</tr>
<tr>
<td>Standard of living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.489</td>
<td>0.269</td>
<td>33.131</td>
<td>0.000</td>
<td>4.434</td>
</tr>
<tr>
<td>SSE</td>
<td>-0.052</td>
<td>0.062</td>
<td>0.714</td>
<td>0.398</td>
<td>0.949</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.525</td>
<td>0.269</td>
<td>32.254</td>
<td>0.000</td>
<td>4.595</td>
</tr>
<tr>
<td>SSE</td>
<td>-0.016</td>
<td>0.066</td>
<td>0.059</td>
<td>0.808</td>
<td>0.984</td>
</tr>
<tr>
<td>Consumption expenditure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.337</td>
<td>0.267</td>
<td>25.072</td>
<td>0.000</td>
<td>3.808</td>
</tr>
<tr>
<td>SSE</td>
<td>0.054</td>
<td>0.068</td>
<td>0.619</td>
<td>0.432</td>
<td>1.055</td>
</tr>
<tr>
<td>New/expanded business</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.176</td>
<td>0.275</td>
<td>18.294</td>
<td>0.000</td>
<td>3.240</td>
</tr>
<tr>
<td>SSE</td>
<td>-0.151**</td>
<td>0.075</td>
<td>3.992</td>
<td>0.046</td>
<td>1.163</td>
</tr>
</tbody>
</table>

Significant at 1% (**); 5% (*) critical level
Source: Author’s Computation (2018)

Findings from table 4.2.9 show that SSE is statistically significant for both income and new/expanded business variables. The SSE is significant at 1% level and is positively related to income. This means that it is more likely to increase the income of the beneficiaries that were engaged in the programme. Here, we can see that this result is greatly similar to that of Model 1 however, the values of the variables differ and it can be seen that the predictive power of this model has increased when the other independent variables were dropped. In addition, the SSE is significant at 5% level and is positively associated with new/expanded business. This suggests that it is more likely that a beneficiary of this programme will start a new business or expand an existing one. For all other dependent variables, the SSE is not statistically significant and does not make any impact.
TABLE 4.2.10: Type 3 (REP)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>S.E</th>
<th>Wald</th>
<th>Sig.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.151</td>
<td>0.381</td>
<td>31.857</td>
<td>0.000</td>
<td>8.593</td>
</tr>
<tr>
<td>REP</td>
<td>-0.110</td>
<td>0.160</td>
<td>0.472</td>
<td>0.492</td>
<td>0.896</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.049</td>
<td>0.334</td>
<td>9.860</td>
<td>0.002</td>
<td>2.655</td>
</tr>
<tr>
<td>REP</td>
<td>0.323**</td>
<td>0.159</td>
<td>4.152</td>
<td>0.042</td>
<td>1.382</td>
</tr>
<tr>
<td>Standard of living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.488</td>
<td>0.308</td>
<td>23.296</td>
<td>0.000</td>
<td>4.429</td>
</tr>
<tr>
<td>REP</td>
<td>-0.088</td>
<td>0.131</td>
<td>0.450</td>
<td>0.502</td>
<td>0.916</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.391</td>
<td>0.318</td>
<td>19.079</td>
<td>0.000</td>
<td>4.018</td>
</tr>
<tr>
<td>REP</td>
<td>0.037</td>
<td>0.139</td>
<td>0.071</td>
<td>0.789</td>
<td>1.038</td>
</tr>
<tr>
<td>Consumption expenditure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.036</td>
<td>0.318</td>
<td>10.640</td>
<td>0.001</td>
<td>2.818</td>
</tr>
<tr>
<td>REP</td>
<td>0.239</td>
<td>0.147</td>
<td>2.670</td>
<td>0.102</td>
<td>1.271</td>
</tr>
<tr>
<td>New/expanded business</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.359</td>
<td>0.336</td>
<td>16.388</td>
<td>0.000</td>
<td>3.894</td>
</tr>
<tr>
<td>REP</td>
<td>0.154</td>
<td>0.152</td>
<td>1.027</td>
<td>0.311</td>
<td>1.166</td>
</tr>
</tbody>
</table>

Significant at 5% (***) critical level
Source: Author’s Computation (2018)

The table above presents the dependent variable “income” as the only variable where REP is the independent variable that is statistically significant while for the others, it is not significant and therefore does not have any impact. REP is significant at 5% level and is positively associated with income. Thus, it is more likely to increase the income of the beneficiaries engaged in the programme.
Table 4.2.11 shows results that are also very similar with that of Model 1. Here, SPW is statistically significant for 4 out of 6 of the dependent variables while the other covariates are not for all of them and therefore do not have any impact on the dependent variables. Just like in Model 1, the SPW is significant at 1% level and is inversely related with standard of living. This suggests that *benefactors of this programme are less likely to have an improvement or change in their standard of living because of participating in the SPW programme*. Similarly, it is also significant at 1% level and is related inversely to more assets.

The *beneficiaries of this programme therefore, are less likely to acquire more assets because of participating in the programme*. Furthermore, it is also significant at 5% level and is inversely associated with increased consumption expenditure. This suggests that *beneficiaries*
of this programme are less likely to have an increase in their consumption expenditure. Finally, SPW is significant at 10% level and is inversely associated with new/expanded business. This indicates that beneficiaries of this programme are less than likely to be able to acquire a new business or expand an existing one.

4.5. Discussion of Regression Results

The aim of this study is to find out whether NDE programmes have contributed to poverty alleviation among its beneficiaries in Gombe State. Findings clearly revealed that the impact of the NDE programmes on poverty status of beneficiaries were not statistically significant for all programmes, that is, NDE programmes have not led to any significant reduction in poverty among its beneficiaries. This result is in agreement with most of the studies done on intervention programmes aimed at poverty alleviation such as Abbas (2016) and Njoku (2010).

Reasons that could be put forward are that many of the poverty eradication programmes in Nigeria have the problem of targeting the wrong set of people, usually the less poor or affluent instead of the core poor that actually need them. The general level of poverty in the study area is also too high and the inputs provided by these programmes might not be sufficient to push them out of poverty. In addition, most of these programmes face the problem of lack of proper monitoring and evaluation by the government and keeping up with the progress of the beneficiaries after engaging in the programmes.

Surprisingly, the VSD programme that had the largest number of beneficiaries had no significant impact on all of the dependent variables. This could mean that many of the beneficiaries of the programme did not make use of the vocational skills acquired to improve their general wellbeing, given the nature of the study area, which is mainly rural and underdeveloped.
Furthermore, this study assessed the impact of NDE programmes on the income and standard of living of beneficiaries of these programmes. For income, some of the programmes have shown significant impact. This is in line with the study done by Ekong and Ekong (2016) in which their findings suggested that there was an NDE-improved income linkage in Akwa-Ibom State although the effect was minimal. Regarding living standards, the SPW programmes is the only programme that had significant impact although the beneficiaries were less than likely to have an improvement in their standard of living as a result of participating. This is in conformity with the findings of Ebenehi (2012).

A supplementary analysis (Model 2) of the sub-schemes of the four programmes of the NDE shows highly similar results with that of the main analysis (Model 1). Areas where they differ are for the programmes REP and SPW. In Model 1, the sub-schemes under the REP showed to have significant impact on income and are more likely to increase beneficiaries’ incomes engaged in the schemes. While those under the SPW, indicated that, there is significant impact on income and therefore, the beneficiaries were less than likely to have an increase in their incomes. In Model 2 however, these programmes did not have any significant impact on the dependent variables. As for the similarities between the two models, the values of the variables are higher by small units and this increased the predictive power of Model 2 when the other independent variables were dropped.
CHAPTER FIVE

5.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

This chapter consists of four sections; section one is the introduction, section two presents the summary of the findings; section three draws the conclusion and lastly recommendations are given.

5.2 SUMMARY OF THE FINDINGS

Using descriptive and logistic regression analysis, this study generated and applied a cross sectional data set for a sample of 400 respondents in the three senatorial districts of Gombe State. Below is the summary of findings:

i. The analysis of the descriptive statistics shows that the NDE has succeeded in targeting the right group of people as beneficiaries of their programmes for the model respondent was shown to be a person who is in need of assistance to gain a reasonable income, improve his/her living standards and if poor, to be lifted out of poverty.

ii. This study finds that the VSD, SSE, REP and SPW programmes of the NDE were not statistically significant. The probability failed to reach the 5% significance level (at \(p < 0.05 \)) and therefore, the programmes did not have any probability of reducing poverty among their beneficiaries.

iii. The SSE was statistically significant for the dependent variable Income. The SSE programme had a positive likelihood of increasing the beneficiaries’ incomes by 1.32 times. The VSD, REP and SPW were statistically insignificant.
iv. The SPW was statistically significant for the dependent variable Standard of living. The SPW had a negative likelihood of improving the living standards of the beneficiaries by 0.58 times. The VSD, SSE and REP were statistically insignificant.

v. In Model 2, results obtained were almost exact with that of Model 1 except for the REP programme. The REP was also statistically significant for the dependent variable Income and had a positive likelihood of increasing the incomes of the beneficiaries by 0.59 times.

vi. For the other dependent variables (assets, consumption expenditure and New/expanded business), the SPW programme was statistically significant. The SPW had a negative likelihood of the acquisition of more assets of the beneficiaries by 0.50 times; increasing their consumption expenditure by 0.61 times and acquiring/expanding a business by 0.68 times. The REP was also statistically significant for only the dependent variable Consumption expenditure. The REP had a positive likelihood of the beneficiaries having increase in their consumption expenditure by 1.43 times.

vii. For Model 2, SSE was statistically significant for the dependent variable New/expanded business and had a positive likelihood of beneficiaries acquiring/expanding a business by 1.5 times. The SPW was statistically significant for the dependent variables; assets, consumption expenditure and new/expanded business, with the same results as that of Model 1.

5.3 CONCLUSION

Based on the findings of this study, the following conclusions are drawn. First, The NDE programmes, as other intervention projects directed at poverty alleviation, did not significantly reduce the incidence of poverty of the poor in the state. Although, the NDE is an agency charged with job creation, it was expected that the its programmes would provide a
means of getting inputs that would lift the beneficiaries that are vulnerable out of the poverty line. Women, who constituted about 61% of the population sampled and are the most vulnerable to poverty, would have experienced a change in their poverty status through benefits received in the form of inputs and loans, which would have been sufficient for them to be self-employed. The high levels of poverty in Gombe state coupled with religious and traditional restrictions that prevent women from any active form of trading and farming, which are the major economic activities in the state, contributes to the poor participation rate of women in the informal labour market. Secondly, despite this, however, the incomes of the beneficiaries engaged in the SSE programmes of the NDE were statistically significant. The beneficiaries of the SSE programme were provided inputs and training and given that traders constituted about 35%, they were more likely to have increased income levels and therefore, we can say that the NDE has succeeded in this aspect. The standard of living of beneficiaries of the SPW programmes was also statistically significant. However, compared to that of the SSE, the impact was minimal. This, we can argue is because of the temporary nature of this programme where beneficiaries are only engaged in activities such as street constructions, repairs, maintenance and others which only comes up occasionally.

5.4 RECOMMENDATIONS

i. It is recommended that NDE programmes should re-structure or streamline their activities and programmes primarily towards the agricultural and informal commercial sectors of the state. Given the nature of Gombe state being mostly rural, majority of the beneficiaries of NDE programmes were farmers 36.1% and traders (35%), indigenes and non-indigenes alike would therefore, be motivated to actively seek the help of the agency and this would positively translate to increased employment levels and subsequently a reduction in poverty.
ii. Furthermore, the NDE should ensure that its programmes are fully funded and adequate inputs should be supplied for all phases of the programmes, as many of the respondents complained of insufficient inputs at the training centers. In addition, adequate loans should be given to enable beneficiaries start up and sustain their businesses, as there are high costs associated with running a business in the state.

iii. In addition, more NDE training centers should be established to expand and create awareness of the activities of the NDE. Only three centers cater for the 11 local government areas of the state and many do not get the opportunity to benefit from the income-generating programmes of the NDE. This has attributed to the small number of just 19,599 beneficiaries since inception. To achieve this, the NDE can collaborate with private individuals and all the local authorities in the state to assist with funding and infrastructural facilities.

5.5 SUGGESTIONS FOR FURTHER RESEARCH

The suggested area for further research is:

i. Similar research should be replicated in other States using different methodological approaches and statistical tools to further assess the impact of the NDE on poverty and unemployment. A study worthy of note that employed rigorous analytical tools in assessing the impact of intervention programmes on poverty is that of Shehu, Abdullahi and Haruna (2012) which used a similar approach like the one employed in this study.

ii. More studies should be undertaken in Gombe state most especially on issues such as unemployment, poverty, inflation, etc, as there exist a dare need for updated data if generated, which would be invaluable to the government in policy making and legislation.
References

APPENDIX I

Questionnaire No……..

IMPACT OF THE NATIONAL DIRECTORATE OF EMPLOYMENT PROGRAMMES ON POVERTY ALLEVIATION IN GOMBE STATE.

Dear Respondent,

This questionnaire will be used by a student of Department of Economics, Faculty of Social Sciences, Ahmadu Bello University, Zaria. Please, respond or tick where necessary. All information will be treated with confidentiality and will strictly be used for the purpose of research only.

Thank you for your cooperation.
SECTION A: SOCIO-ECONOMIC CHARACTERISTICS OF THE RESPONDENT

1. Sex:
 (a) Male ()
 (b) Female ()

2. Age of respondent:
 (a) Below 18 () (b) 18 – 30 ()
 (c) 31 – 50 () (d) 51 – 70 ()

3. Marital status:
 (a) Single () (b) Married ()
 (c) Widow/Widower () (d) Divorced ()

4. Household head:
 (a) Mother ()
 (b) Father ()
 (c) Others (specify) ……………………………………………………………………………

5. Household size:
 (a) Less than 2 () (b) 2-4 ()
 (c) 5-7 () (d) 8-10 ()
 (e) Above 10

6. Educational Level:
 (a) No formal education () (b) Uncompleted education ()
 (c) Primary education () (d) Secondary education ()
 (e) Post-secondary education ()

7. What is your major occupation?
 (a) Farming () (c) Civil servant ()
 (b) Trading () (d) Retired ()
 (e) Others (Specify): ……………………………………………………………………………
SECTION B: IMPACT OF NDE PROGRAMMES ON POVERTY ALLEVIATION.

8. What is your average monthly income?
(a) Less than N5000 ()
(b) N5000 – N10,000 ()
(c) N11,000 – N20,000 ()
(d) N21,000 – N30,000 ()
(e) Above N30,000 ()

9. What is your average consumption expenditure per day?
(a) Less than N500 ()
(b) N500 – N1,000 ()
(c) N1,100 – N1,500 ()
(d) N1,600 – N2,000 ()
(e) Above N2,000 ().

10. What type of assets do you have?
(a) Livestock/Animals ()
(b) Land ()
(c) Vehicle ()
(d) House ()
(e) Others (specify) ………………………………………………………………………

11. Do you have adequate access to water supply, electricity and health care services?
(a) Yes ()
(b) No ()

12. Are you engaged in any NDE programme/scheme?
(a) Yes ()
(b) No ()

13. If yes, how have you benefitted from NDE?
(a) Loan ()
(b) Training ()
(c) Employment ()
(d) Input Supply ()
(e) Others (specify) ………………………………………………………………………

14. What is the total amount of cash loan/credit that you have received from the NDE?
(a) 50,000 – 100,000 (b) 101,000 – 150,000
(c) 151,000 – 200,000 (d) Above 200,000.

15. Have you acquired more assets as a result of participating in NDE programmes?
(a) Yes ()
(b) No ()
16. Has your income increased as a result of engaging in NDE programmes?

(a) Yes ()

(b) No ()

17. By how much has your income increased?

(a) Less than N5000 ()

(b) N5000 – N10,000 ()

(c) N11,000 – N20,000 ()

(d) N21,000 – N30,000 ()

(e) Above N30,000 ()

18. Has your household consumption significantly improved as a result of engaging in NDE programmes?

(a) Yes ()

(b) No ()

19. Has the NDE programmes enabled you to set up a business or expand your existing business?

(a) Yes ()

(b) No ()

20. Which of the following training programmes/schemes have you benefitted from the Vocational Skills Development Programme?

(i) National Open Apprenticeship scheme ()

(ii) School-on-wheels ()

(iii) Vocational skills for physically challenged and vulnerable persons ()

(iv) Partnership in skills training ()

(v) Resettlement loan scheme ()

21. Which of the following training programmes/schemes have you benefitted from the Small Scale Enterprises Programme?

(i) Entrepreneurship skills development training ()

(ii) Micro-business-start-up training ()

(iii) Entrepreneurship development programme ()

(iv) Enterprise creation fund ()

(v) Women employment training ()

(vi) Micro enterprise empowerment scheme ()

(vii) Special micro enterprises empowerment scheme ()
22. Which of the following training programmes/schemes have you benefitted from the Rural Employment Promotion Programme?

(i) Rural agricultural development training scheme ()

(ii) Integrated farming and training scheme ()

(iii) Rural handicrafts training scheme ()

(iv) Post-Rural agricultural development training scheme ()

23. Which of the following training programmes/schemes have you benefitted from the Special Public Works programme?

(i) Graduate attachment programme ()

(ii) Environmental beautification training scheme ()

(iii) Graduate coaching scheme ()

(iv) Solar energy training scheme ()

Thank you.
APPENDIX II

which of the following training programmes/schemes have you benefitted from the Vocational Skills Development Programme? * if yes, how have you benefitted from NDE?

<table>
<thead>
<tr>
<th>Count</th>
<th>if yes, how have you benefitted from NDE?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loan</td>
<td>training</td>
</tr>
<tr>
<td>NURS</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td>which of the following training programmes/schemes have you benefitted from the Vocational Skills Development Programme?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOW</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>VSPV</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>PIST</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>RLS</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>173</td>
</tr>
</tbody>
</table>

which of the following training programmes/schemes have you benefitted from the Small Scale Enterprises Programme? * if yes, how have you benefitted from NDE?

<table>
<thead>
<tr>
<th>Count</th>
<th>if yes, how have you benefitted from NDE?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>loan</td>
<td>training</td>
</tr>
<tr>
<td>NOAS</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td>SOW</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>VSPV</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>PIST</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>RLS</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>173</td>
</tr>
</tbody>
</table>

which of the following training programmes/schemes have you benefitted from the Rural Employment Promotion Programme? * if yes, how have you benefitted from NDE?

<table>
<thead>
<tr>
<th>Count</th>
<th>if yes, how have you benefitted from NDE?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>loan</td>
<td>training</td>
</tr>
<tr>
<td>RADTS</td>
<td>36</td>
<td>68</td>
</tr>
<tr>
<td>MBST</td>
<td>44</td>
<td>59</td>
</tr>
<tr>
<td>EDP</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>ECF</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>WEP</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>SMEES</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>173</td>
</tr>
</tbody>
</table>

which of the following training programmes/schemes have you benefitted from the Special Public Works Programme? * if yes, how have you benefitted from NDE?

<table>
<thead>
<tr>
<th>Count</th>
<th>if yes, how have you benefitted from NDE?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>loan</td>
<td>training</td>
</tr>
<tr>
<td>GAP</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>EBTS</td>
<td>95</td>
<td>112</td>
</tr>
<tr>
<td>GCS</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>SETS</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>173</td>
</tr>
</tbody>
</table>

Frequencies

Statistics

Frequency Table

sex of respondents

<table>
<thead>
<tr>
<th>sex of respondents</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>228</td>
<td>61.0</td>
<td>61.0</td>
</tr>
<tr>
<td>male</td>
<td>146</td>
<td>39.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

age of respondents

<table>
<thead>
<tr>
<th>age of respondents</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 18</td>
<td>35</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>18-30</td>
<td>204</td>
<td>54.5</td>
<td>63.9</td>
</tr>
<tr>
<td>31-50</td>
<td>100</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>51-70</td>
<td>35</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Marital Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>152</td>
<td>40.6</td>
<td>40.6</td>
<td>40.6</td>
</tr>
<tr>
<td>Married</td>
<td>180</td>
<td>48.1</td>
<td>48.1</td>
<td>88.8</td>
</tr>
<tr>
<td>Widowed/Widower</td>
<td>17</td>
<td>4.5</td>
<td>4.5</td>
<td>93.3</td>
</tr>
<tr>
<td>Divorced</td>
<td>25</td>
<td>6.7</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Household Head

<table>
<thead>
<tr>
<th>Role</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>76</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
</tr>
<tr>
<td>Father</td>
<td>217</td>
<td>58.0</td>
<td>58.0</td>
<td>78.3</td>
</tr>
<tr>
<td>Others</td>
<td>81</td>
<td>21.7</td>
<td>21.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Household Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2</td>
<td>86</td>
<td>23.0</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>2-4</td>
<td>177</td>
<td>47.3</td>
<td>47.3</td>
<td>70.3</td>
</tr>
<tr>
<td>5-7</td>
<td>40</td>
<td>10.7</td>
<td>10.7</td>
<td>81.0</td>
</tr>
<tr>
<td>8-10</td>
<td>58</td>
<td>15.5</td>
<td>15.5</td>
<td>96.5</td>
</tr>
<tr>
<td>Above 10</td>
<td>13</td>
<td>3.5</td>
<td>3.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Educational Level

<table>
<thead>
<tr>
<th>Level</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No formal education</td>
<td>81</td>
<td>21.7</td>
<td>21.7</td>
<td>21.7</td>
</tr>
<tr>
<td>Uncompleted education</td>
<td>25</td>
<td>5.3</td>
<td>5.3</td>
<td>27.0</td>
</tr>
<tr>
<td>Primary education</td>
<td>25</td>
<td>5.3</td>
<td>5.3</td>
<td>32.4</td>
</tr>
<tr>
<td>Secondary education</td>
<td>155</td>
<td>41.4</td>
<td>41.4</td>
<td>73.8</td>
</tr>
<tr>
<td>Post secondary education</td>
<td>98</td>
<td>26.2</td>
<td>26.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Major Occupation

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming</td>
<td>135</td>
<td>36.1</td>
<td>36.1</td>
<td>36.1</td>
</tr>
<tr>
<td>Trading</td>
<td>131</td>
<td>35.0</td>
<td>35.0</td>
<td>71.1</td>
</tr>
<tr>
<td>Civil Servant</td>
<td>42</td>
<td>11.2</td>
<td>11.2</td>
<td>82.4</td>
</tr>
<tr>
<td>Retired</td>
<td>25</td>
<td>6.7</td>
<td>6.7</td>
<td>99.0</td>
</tr>
<tr>
<td>Others</td>
<td>41</td>
<td>11.0</td>
<td>11.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Logit Regression

Variables: AverageIncome VSD SSE REP SPW

Logit Regression Notes
- **Output Created:** 17-AUG-2017 13:58:31
- **Processor Time:** 00:00:00.06
- **Elapsed Time:** 00:00:00.09

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-poor</td>
<td>0</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
</tr>
</tbody>
</table>
Classification Table

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th></th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>what is your average monthly income</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>non-poor</td>
<td>poor</td>
<td>non-poor</td>
</tr>
<tr>
<td>Step 0</td>
<td></td>
<td>0</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td>3</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>Df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.916</td>
<td>.155</td>
<td>153.547</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>1.721</td>
<td>1</td>
</tr>
<tr>
<td>SSE</td>
<td>.368</td>
<td>1</td>
</tr>
<tr>
<td>H&P</td>
<td>.473</td>
<td>1</td>
</tr>
<tr>
<td>SPW</td>
<td>1.678</td>
<td>1</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>3.687</td>
<td>4</td>
<td>.450</td>
</tr>
</tbody>
</table>

Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Observed</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>14.844</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes

- Variable(s) entered on step 1: VSD, SSE, H&P, SPW.
- LOGISTIC REGRESSION VARIABLES IncreasedIncome.
- /METHOD=ENTER VSD SSE H&P SPW.
- /PRINT=GOODFIT.
- /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unselected Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>has your income increased as a result of engaging in NDE programmes?</td>
<td>No</td>
<td>yes</td>
</tr>
<tr>
<td>Step 0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>316</td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>1.695</td>
<td>.143</td>
<td>140.843</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>SSE</td>
<td>13.663</td>
<td>1</td>
</tr>
<tr>
<td>REP</td>
<td>4.220</td>
<td>1</td>
</tr>
<tr>
<td>SPW</td>
<td>2.292</td>
<td>1</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>18.283</td>
<td>4</td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>19.544</td>
<td>4</td>
<td>.001</td>
</tr>
<tr>
<td>Block</td>
<td>19.544</td>
<td>4</td>
<td>.001</td>
</tr>
<tr>
<td>Model</td>
<td>19.544</td>
<td>4</td>
<td>.001</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log Likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>303.159</td>
<td>.051</td>
<td>.088</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.685</td>
<td>8</td>
<td>.123</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>has your income increased as a result of engaging in NDE programmes?</td>
<td>No</td>
<td>yes</td>
</tr>
<tr>
<td>Step 1</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>316</td>
</tr>
</tbody>
</table>

a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>.060</td>
<td>.098</td>
<td>456</td>
<td>1</td>
<td>.500</td>
</tr>
<tr>
<td>SSE</td>
<td>.276</td>
<td>.089</td>
<td>9.628</td>
<td>1</td>
<td>.002</td>
</tr>
<tr>
<td>REP</td>
<td>.256</td>
<td>.174</td>
<td>2.216</td>
<td>1</td>
<td>.137</td>
</tr>
<tr>
<td>SPW</td>
<td>.269</td>
<td>.156</td>
<td>2.981</td>
<td>1</td>
<td>.084</td>
</tr>
<tr>
<td>Constant</td>
<td>1.143</td>
<td>.542</td>
<td>4.448</td>
<td>1</td>
<td>.035</td>
</tr>
</tbody>
</table>

a. Variables entered on step 1: VSD, SSE, REP, SPW.

LOGISTIC REGRESSION VARIABLES LivStandard.
/METHOD=ENTER VSD SSE REP SPW.
/PRINT=GOODFIT.
/CUT=(0.50) POUT=(0.10) ITERATE(20) CUT(0.5).

94
Logistic Regression

Notes

Output Created

- Data: C:/Users/Farida/Documents/Analysis data.sav
- Active Dataset: DataSet1
- Filter: None
- Weight: None
- N of Rows in Working Data File: 376

Missing Value Handling

- Definition of Missing: User-defined missing values are treated as missing.
- User-defined missing values are treated as missing.

Syntax

```
LOGISTIC REGRESSION VARIABLES LivStandard
/METHOD=ENTER VSD SSE REP SPW
/PRINT=GOODFIT
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(.5).
```

Resources

- Processor Time: 00:00:00.02
- Elapsed Time: 00:00:00.02

Case Processing Summary

<table>
<thead>
<tr>
<th>Weighted Cases*</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Cases</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Included in Analysis</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

- If weights is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>294</td>
<td>100.0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Constant is included in the model.
- The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0 Constant</td>
<td>1.302</td>
<td>.126</td>
<td>106.534</td>
<td>1</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>VSD</th>
<th>1.930</th>
<th>1</th>
<th>.165</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>.716</td>
<td>1</td>
<td>.399</td>
</tr>
<tr>
<td>REP</td>
<td>.451</td>
<td>1</td>
<td>.502</td>
</tr>
<tr>
<td>SPW</td>
<td>15.679</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>18.538</td>
<td>1</td>
<td>.001</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Block</td>
<td>18.121</td>
<td>4</td>
<td>.001</td>
</tr>
<tr>
<td>Step 1 Model</td>
<td>18.121</td>
<td>4</td>
<td>.001</td>
</tr>
</tbody>
</table>

Model Summary

- -2 Log Likelihood: 370.153
- Cox & Snell R Square: .047
- Nagelkerke R Square: .073

- Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.298</td>
<td>8</td>
<td>.075</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>294</td>
<td>100.0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- The cut value is .500
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>.124</td>
<td>.084</td>
<td>2.189</td>
<td>1</td>
<td>.139</td>
<td>1.132</td>
</tr>
<tr>
<td>SSE</td>
<td>.049</td>
<td>.066</td>
<td>.557</td>
<td>1</td>
<td>.456</td>
<td>.952</td>
</tr>
<tr>
<td>REP</td>
<td>.014</td>
<td>.144</td>
<td>.510</td>
<td>1</td>
<td>.820</td>
<td>.997</td>
</tr>
<tr>
<td>SPW</td>
<td>.551</td>
<td>1.497</td>
<td>14.917</td>
<td>1</td>
<td>.000</td>
<td>.577</td>
</tr>
</tbody>
</table>

Constant | 2.501 | 513 | 23.781 | 1 | .000 | 12.193 |

Step 1

Variables not in the Equation

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>.320</td>
<td>1</td>
<td>.566</td>
</tr>
<tr>
<td>SSE</td>
<td>.620</td>
<td>1</td>
<td>.431</td>
</tr>
<tr>
<td>REP</td>
<td>2.694</td>
<td>1</td>
<td>.101</td>
</tr>
<tr>
<td>SPW</td>
<td>9.011</td>
<td>1</td>
<td>.003</td>
</tr>
</tbody>
</table>

Overall Statistics | 14.880 | 4 | .005 |

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>14.367</td>
<td>4</td>
<td>.006</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th></th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>374.263</td>
<td>.039</td>
<td>.062</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.
 Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.615</td>
<td>8</td>
<td>.034</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>has your household consumption significantly improved as a result of engaging in NDE programmes?</td>
<td>no</td>
</tr>
<tr>
<td>Step 1</td>
<td>yes</td>
<td>0</td>
</tr>
</tbody>
</table>

The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>.087</td>
<td>.088</td>
<td>365</td>
<td>1</td>
<td>.526</td>
</tr>
<tr>
<td>SSE</td>
<td>.002</td>
<td>.073</td>
<td>1</td>
<td>.074</td>
<td>1.02</td>
</tr>
<tr>
<td>REP</td>
<td>.354</td>
<td>.161</td>
<td>4835</td>
<td>1</td>
<td>.028</td>
</tr>
<tr>
<td>SPW</td>
<td>-.488</td>
<td>.150</td>
<td>10657</td>
<td>1</td>
<td>.001</td>
</tr>
<tr>
<td>Constant</td>
<td>2.220</td>
<td>.539</td>
<td>16944</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Logistic Regression

LOGISTIC REGRESSION VARIABLES NewBusiness /METHOD=ENTER VSD, SSE, REP, SPW. /PRINT=GOODFIT /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.675</td>
<td>.142</td>
<td>139424</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>1.621</td>
<td>1</td>
</tr>
<tr>
<td>SSE</td>
<td>4.064</td>
<td>1</td>
</tr>
<tr>
<td>REP</td>
<td>1.031</td>
<td>1</td>
</tr>
<tr>
<td>SPW</td>
<td>5.867</td>
<td>1</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>12.764</td>
<td>4</td>
</tr>
</tbody>
</table>
Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.589</td>
<td>4</td>
<td>.013</td>
</tr>
<tr>
<td>Block</td>
<td>12.589</td>
<td>4</td>
<td>.013</td>
</tr>
<tr>
<td>Model</td>
<td>12.589</td>
<td>4</td>
<td>.013</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log Likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>313.484</td>
<td>.033</td>
<td>.057</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.773</td>
<td>8</td>
<td>.046</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted has the NDE programmes enabled you to set up a business or expand your existing business?</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>84.2</td>
</tr>
</tbody>
</table>

a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>-.131</td>
<td>.093</td>
<td>1.988</td>
<td>1</td>
<td>.159</td>
<td>1.877</td>
</tr>
<tr>
<td>SSE</td>
<td>.124</td>
<td>.081</td>
<td>2.361</td>
<td>1</td>
<td>.124</td>
<td>1.132</td>
</tr>
<tr>
<td>REP</td>
<td>.204</td>
<td>.167</td>
<td>1.485</td>
<td>1</td>
<td>.223</td>
<td>1.226</td>
</tr>
<tr>
<td>SPW</td>
<td>-.387</td>
<td>.154</td>
<td>6.292</td>
<td>1</td>
<td>.012</td>
<td>.679</td>
</tr>
<tr>
<td>Constant</td>
<td>2.160</td>
<td>.558</td>
<td>14.964</td>
<td>1</td>
<td>.000</td>
<td>8.667</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: VSD, SSE, REP, SPW.

Logistic Regression

Notes

- Output Created: 17-AUG-2017 14:40:01
- Input Data: C:/Users/Farida/Documents/Analysis data.sav
- Active Dataset: DataSet1
- Weight: <none>
- Split File: <none>
- N of Rows in Working Data File: 376
- Missing Value Handling: User defined missing values are treated as missing
- Syntax: LOGISTIC REGRESSION VARIABLES Averageincome /METHOD=ENTER VSD /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
- Resources: Processor Time 00:00:00.00

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weights is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-poor</td>
<td>0</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 2: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted what is your average monthly income</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>87.2</td>
</tr>
</tbody>
</table>

a. Constant is included in the model.

Variables in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.916</td>
<td>.155</td>
<td>153.547</td>
<td>1</td>
<td>.000</td>
<td>6.792</td>
</tr>
</tbody>
</table>

a. The cut value is .500
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VSD</td>
<td>1.721</td>
<td>1</td>
<td>.190</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>1.721</td>
<td>1</td>
<td>.190</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

<table>
<thead>
<tr>
<th>Ch-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>1.713</td>
<td>1 .191</td>
</tr>
<tr>
<td>Block</td>
<td>1.713</td>
<td>1 .191</td>
</tr>
<tr>
<td>Model</td>
<td>1.713</td>
<td>1 .191</td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>254.050</td>
<td>1</td>
<td>.009</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Model Summary

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>what is your average monthly income</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-poor</td>
<td>poor</td>
</tr>
<tr>
<td>Step 1</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>87.2</td>
<td></td>
</tr>
</tbody>
</table>

a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1*</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>-.124</td>
<td>.095</td>
<td>1.707</td>
<td>1</td>
<td>.191</td>
<td>.884</td>
</tr>
<tr>
<td>Constant</td>
<td>2.282</td>
<td>.331</td>
<td>47.628</td>
<td>1</td>
<td>.000</td>
<td>9.799</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: VSD.

Logit Model

```logistic regression
LOGISTIC REGRESSION VARIABLES IncreasedIncome /METHOD=ENTER VSD /
/Criteria=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

Notes

- Logistic Regression
- Output Created: 17-AUG-2017 14:40:48
- Resources: Processor Time = 00:00:00.02, Elapsed Time = 00:00:00.02

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Selected Cases</td>
<td>Missing Cases</td>
<td>Total</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weight is in effect, see classification table for the total number of cases.

Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 2: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>has your income increased as a result of engaging in NDE programmes?</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Step 0</td>
<td>58</td>
<td>316</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>84.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Constant is included in the model.

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>B</th>
<th>S.E.</th>
<th>t</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.695</td>
<td>.143</td>
<td>14.083</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VSD</td>
<td>1.53</td>
<td>1</td>
<td>.696</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.53</td>
<td>1</td>
<td>.696</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>1.53</td>
<td>1</td>
<td>.696</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step 2 Log (likelihood)</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>322.550</td>
<td>.000</td>
<td>.001</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table*

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>has your income increased as a result of engaging in NDE programmes?</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td>84.5</td>
</tr>
</tbody>
</table>

a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1*</th>
<th>VSD</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.793</td>
<td>.291</td>
<td>37.969</td>
<td>1</td>
<td>.000</td>
<td>6.009</td>
</tr>
</tbody>
</table>

*a. Variable(s) entered on step 1: VSD.

LOGISTIC REGRESSION VARIABLES LivStandard /METHOD=ENTER VSD /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Notes

Output Created
16 AUG 2017 11:07:54

Data: C:\Users\Farida\Documents\Analysis data.sav

Active Dataset: Data Set 1

Filter: <none>

Weight: <none>

Missing Value Handling: User-defined missing values are treated as missing

Syntax:
LOGISTIC REGRESSION VARIABLES LivStandard.
/METHOD=ENTER VSD.
/CriteriaPIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Summary

Unweighted Cases

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>374</td>
<td>99.5</td>
</tr>
</tbody>
</table>

Selected Cases

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>374</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do you have access to water supply, electricity and health care services?</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td>78.6</td>
</tr>
</tbody>
</table>

*a. Constant is included in the model.
b. The cut value is .500*

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.302</td>
<td>.126</td>
<td>206.534</td>
<td>1</td>
<td>.000</td>
<td>3.765</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.930</td>
<td>1</td>
<td>1.165</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>1.947</td>
<td>1</td>
<td>1.163</td>
</tr>
<tr>
<td>Block</td>
<td>1.947</td>
<td>1</td>
<td>1.163</td>
</tr>
<tr>
<td>Model</td>
<td>1.947</td>
<td>1</td>
<td>1.163</td>
</tr>
</tbody>
</table>

Model Summary

- Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>do you have access to water supply, electricity, and health care services?</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>294</td>
</tr>
<tr>
<td>Overall</td>
<td>78.6</td>
<td></td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>.109</td>
<td>.079</td>
<td>1</td>
<td>1.920</td>
<td>1.115</td>
</tr>
<tr>
<td>Constant</td>
<td>1.001</td>
<td>245</td>
<td>1</td>
<td>16.650</td>
<td>.000</td>
</tr>
</tbody>
</table>

LOGISTIC REGRESSION VARIABLES IncreasedConsumption /METHOD=ENTER VSD /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression Notes

- Output Created 16-AUG-2017 11:04:15
- Comments
 - Active Dataset: DataSet1
 - Missing Value Handling: User-defined missing values are treated as missing
- Syntax
 - LOGISTIC REGRESSION VARIABLES IncreasedConsumption /METHOD=ENTER VSD /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
- Resources
 - Processor Time: 00:00:00.00
 - Elapsed Time: 00:00:00.00

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases*</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Selected Cases</td>
<td>Missing Cases</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weight is in effect, see classification table for the total number of cases.

Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has your household consumption significantly improved as a result of engaging in NDE programmes?</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>307</td>
</tr>
<tr>
<td>Overall</td>
<td>72.1</td>
<td></td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.522</td>
<td>.135</td>
<td>127.426</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

101
Variables not in the Equation

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>VSD</td>
<td>.328</td>
<td>1</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>.329</td>
<td>1</td>
<td>.566</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>.328</td>
<td>1</td>
<td>.567</td>
</tr>
<tr>
<td>Block 1</td>
<td>.328</td>
<td>1</td>
<td>.567</td>
</tr>
<tr>
<td>Model</td>
<td>.328</td>
<td>1</td>
<td>.567</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th></th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>351.302</td>
<td>.001</td>
<td>.001</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>307</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82.1</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>.047</td>
<td>.083</td>
<td>.328</td>
<td>1</td>
<td>.567</td>
<td>.954</td>
</tr>
<tr>
<td>Constant</td>
<td>1.658</td>
<td>.276</td>
<td>36.102</td>
<td>1</td>
<td>.000</td>
<td>5.250</td>
</tr>
</tbody>
</table>

Logistic Regression

Variables in the Equation

LOGISTIC REGRESSION VARIABLES NewBusiness /METHOD=ENTER VSD /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Variables in the Equation

Variables not in the Equation
LOGISTIC REGRESSION VARIABLES Averageincome
/METHOD=ENTER SSE
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step 0
Constant 1.916 .155 153.547 1 .000 6.792

Step 1
VSD -.110 .087 1.611 1 .204 .896

Variables not in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>1.621</td>
<td>1</td>
<td>.203</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>1.621</td>
<td>1</td>
<td>.203</td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>3.04459*</td>
<td>1</td>
<td>.007</td>
</tr>
</tbody>
</table>

Model Summary

-2 Log likelihood | Cox & Snell R Square | Nagelkerke R Square |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.04459*</td>
<td>.004</td>
<td>.007</td>
</tr>
</tbody>
</table>

Step 1: Method = Enter

- Has the NDE programmes enabled you to set up a business or expand your existing business?
 - No
 - Yes

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has the NDE programmes enabled you to set up a business or expand your existing business?</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Overall Percentage

- Percentage Correct
 - 84.2%

Variables in the Equation

Step 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>-1.10</td>
<td>.087</td>
<td>1.611</td>
<td>1</td>
<td>.204</td>
<td>.896</td>
</tr>
<tr>
<td>Constant</td>
<td>1.916</td>
<td>.155</td>
<td>153.547</td>
<td>1</td>
<td>.000</td>
<td>6.792</td>
</tr>
</tbody>
</table>

Step 0: Method = Enter

- What is your average monthly income?
 - non-poor
 - poor

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>what is your average monthly income</td>
</tr>
<tr>
<td></td>
<td>non-poor</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Overall Percentage

- Percentage Correct
 - 87.2%
Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>368</td>
<td>1</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>368</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>372</td>
<td>1</td>
<td>.542</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log Likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>286.279</td>
<td>.001</td>
<td>.002</td>
</tr>
</tbody>
</table>

Model Summary note: Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-poor</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>poor</td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>87.2</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>.047</td>
<td>.078</td>
<td>.367</td>
<td>1</td>
<td>.544</td>
<td>1.549</td>
</tr>
</tbody>
</table>

Variables in the Equation note: Variable(s) entered on step 1: SSE.

LOGISTIC REGRESSION VARIABLES IncreasedIncome /METHOD=ENTER SSE /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

Notes

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Selected Cases</td>
<td>374</td>
<td>100.0</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>316</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>84.5</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>1.695</td>
<td>.143</td>
<td>140.843</td>
<td>1</td>
<td>.000</td>
<td>5.448</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.879</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Model Summary

- Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage Correct</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>0</td>
<td>316</td>
</tr>
<tr>
<td>Overall</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage Correct</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>0</td>
<td>294</td>
</tr>
<tr>
<td>Overall</td>
<td>78.6</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOGISTIC REGRESSION VARIABLES LivStandard.
/METHOD=ENTER SSE.
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Notes

- Missing value handling: User-defined missing values are treated as missing.
- Syntax: LOGISTIC REGRESSION VARIABLES LivStandard.
- Resources: Processor Time
- Elapsed Time: 00:00:00.00

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Case Processing Summary

Dependent Variable Encoding

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage Correct</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>0</td>
<td>294</td>
</tr>
<tr>
<td>Overall</td>
<td>78.6</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>.716</td>
<td>1</td>
<td>.398</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>.716</td>
<td>1</td>
<td>.398</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

<table>
<thead>
<tr>
<th>Omnibus Tests of Model Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
</tr>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>Block</td>
</tr>
<tr>
<td>Model</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Block</th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>387.564</td>
<td>.002</td>
<td>.003</td>
</tr>
</tbody>
</table>

- Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>80</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>294</td>
<td>78.6</td>
</tr>
</tbody>
</table>

- The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE</td>
<td>-.052</td>
<td>.562</td>
<td>714</td>
<td>1</td>
<td>.398</td>
</tr>
<tr>
<td>Constant</td>
<td>1.489</td>
<td>.259</td>
<td>33.13</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

- Variable(s) entered on step 1: SSE.

LOGISTIC REGRESSION VARIABLES MoreAssets /METHOD=ENTER SSE /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

Notes

- Processor Time: 00:00:00.02
- Elapsed Time: 00:00:00.02

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

- If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Yes</td>
<td>304</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall</td>
<td>81.3</td>
<td></td>
</tr>
</tbody>
</table>

- The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.469</td>
<td>.133</td>
<td>122.706</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>SSE</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>.808</td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.059</td>
<td>1</td>
<td>.808</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Likelihood ratio chi-square</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>360.542</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 1</td>
<td>have you acquired more assets as a result of participating in NDE programmes?</td>
<td>0</td>
</tr>
</tbody>
</table>

Constant is included in the model.

Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Constant</td>
<td>1.525</td>
<td>.269</td>
<td>32.254</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Variable(s) entered on step 1: SSE.

Logistic Regression

Notes

- **Output Created**: 16-APR-2017 11:20:40
- **Processor Time**: 00:00:00.00
- **Elapsed Time**: 00:00:00.00

Case Processing Summary

- Unweighted Cases: 376
- Selected Cases: 374
- Unselected Cases: 2
 - Missing Cases: 2
 - Total: 376

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 0</td>
<td>has your household consumption significantly improved as a result of engaging in NDE programmes?</td>
<td>0</td>
</tr>
</tbody>
</table>

Constant is included in the model.

Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Constant</td>
<td>1.522</td>
<td>.335</td>
<td>127.426</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>SSE</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Statistics</td>
<td>0.620</td>
<td>1</td>
<td>.431</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>Df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Step</td>
<td></td>
<td>1</td>
<td>429</td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td>1</td>
<td>429</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td>1</td>
<td>429</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step 1</th>
<th>-2 Log (likelihood)</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>351.003</td>
<td>.002</td>
<td>.003</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted has your household consumption significantly improved as a result of engaging in NDE programmes?</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>307</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>82.1</td>
</tr>
</tbody>
</table>
a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1*</th>
<th>SSE</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>.054</td>
<td>.068</td>
<td>619</td>
<td>1</td>
<td>.432</td>
<td>1.655</td>
</tr>
<tr>
<td>Constant</td>
<td>1.337</td>
<td>.267</td>
<td>25.072</td>
<td>1</td>
<td>.000</td>
<td>3.808</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: SSE.

LOGISTIC REGRESSION VARIABLES NewBusiness /METHOD=ENTER SSE /CRITERIA=PIN (.05) POUT (.10) ITERATE (20) CUT (.5).

Logistic Regression

Notes

16-AUG-2017 11:17:29

Input

Data

Active Dataset: DataSet1
Filter

Weight: <none>
Split File: <none>
Misnamed Rows in Working Data File: 376

Missing Value Handling

Definition of Missing: User defined missing values are treated as missing

Syntax

LOGISTIC REGRESSION VARIABLES NewBusiness /METHOD=ENTER SSE /CRITERIA=PIN (.05) POUT (.10) ITERATE (20) CUT (.5).

Processor Time: 00:00:00.00
Elapsed Time: 00:00:00.00

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th></th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
<td></td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

b. If weights are in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed has the NDE programmes enabled you to set up a business or expand your existing business?</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>has the NDE programmes enabled you to set up a business or expand your existing business?</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>84.2</td>
<td></td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.675</td>
<td>.142</td>
<td>25.072</td>
<td>1</td>
<td>.000</td>
<td>5.339</td>
</tr>
</tbody>
</table>

108
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>SSE</th>
<th>df</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>4.064</td>
<td>1</td>
<td>.044</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th></th>
<th>SSE</th>
<th>df</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>4.064</td>
<td>1</td>
<td>.044</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Ch-square</th>
<th>df</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>4.214</td>
<td>1</td>
<td>.040</td>
</tr>
<tr>
<td>Model</td>
<td>4.214</td>
<td>1</td>
<td>.040</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2Log (likelihood)</th>
<th>User & Adjusted R square</th>
<th>Nagelkerke R square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>321.859</td>
<td>.011</td>
<td>.019</td>
</tr>
</tbody>
</table>

Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has the NDE programmes enabled you to set up a business or expand your existing business?</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>59%</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>315%</td>
</tr>
</tbody>
</table>

*Overall Percentage: 84.2%

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>.151</td>
<td>.075</td>
<td>3.992</td>
<td>1</td>
<td>.046</td>
<td>1.163</td>
</tr>
<tr>
<td>Constant</td>
<td>1.176</td>
<td>.275</td>
<td>18.294</td>
<td>1</td>
<td>.000</td>
<td>3.240</td>
</tr>
</tbody>
</table>

Variable(s) entered on step 1: SSE.

Logistic Regression

LOGISTIC REGRESSION VARIABLES Averageincome /METHOD=ENTER REP /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Notes

Output Created: 16 AUG-2017 11:37:19

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Selected Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-poor</td>
<td>0</td>
</tr>
<tr>
<td>poor</td>
<td>1</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>what is your average monthly income</td>
<td></td>
</tr>
<tr>
<td>non-poor</td>
<td>48%</td>
<td>.0</td>
</tr>
<tr>
<td>poor</td>
<td>326%</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*Overall Percentage: 87.2%

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.916</td>
<td>.155</td>
<td>153.547</td>
<td>1</td>
<td>.000</td>
<td>6.792</td>
</tr>
</tbody>
</table>

109
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>REP</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Statistics</td>
<td></td>
<td></td>
<td>.473</td>
<td>1</td>
<td>.491</td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Variables</th>
<th>REP</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Block</td>
<td></td>
<td>.470</td>
<td>1</td>
<td>.493</td>
</tr>
<tr>
<td>Step 1</td>
<td>Model</td>
<td></td>
<td>.470</td>
<td>1</td>
<td>.493</td>
</tr>
</tbody>
</table>

Model Summary

Block 1: Method = Enter

-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
296.16 | .001 | .002

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>what is your average monthly income</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>non-poor</td>
<td>poor</td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Variables</th>
<th>REP</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>REP</td>
<td>-.110</td>
<td>.160</td>
<td>.472</td>
<td>1</td>
<td>.492</td>
<td>5.448</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>2.151</td>
<td>.381</td>
<td>31.857</td>
<td>1</td>
<td>.000</td>
<td>8.593</td>
<td></td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: REP.

Logistic Regression

LOGISTIC REGRESSION VARIABLES IncreasedIncome /METHOD=ENTER REP /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Notes

- Output Created: 16-AUG-2017 11:43:28
- Processor Time: 00:00:00.00
- Elapsed Time: 00:00:00.00

Case Processing Summary

Unweighted Cases

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Selected Cases

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.5</td>
</tr>
</tbody>
</table>

Unselected Cases

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>yes</td>
</tr>
</tbody>
</table>

Block 2: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>has your income increased as a result of engaging in NDE programmes?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Step 0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>Constant</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>Constant</td>
<td>1.695</td>
<td>.143</td>
<td>140.843</td>
<td>1</td>
<td>.000</td>
<td>5.448</td>
<td></td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0 Variables</th>
<th>REP</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Statistics</td>
<td>4.220</td>
<td>1</td>
<td>.040</td>
<td></td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>4.220</td>
<td>1</td>
<td>.040</td>
</tr>
<tr>
<td>Block 1: Method = Enter</td>
<td>4.353</td>
<td>1</td>
<td>.037</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>318.350*</td>
<td>.012</td>
<td>.020</td>
</tr>
</tbody>
</table>

*a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>REP</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.302</td>
<td>.126</td>
<td>106.534</td>
<td>1</td>
<td>.000</td>
<td>3.675</td>
<td></td>
</tr>
</tbody>
</table>

*Step 1: REP entered on step 1:

LOGISTIC REGRESSION VARIABLES LivStandard.

/METHOD=ENTER REP.

/Criteria=P(F)0.05 POUT(0.10) ITERATE(20) CUT(0.5).

Logistic Regression

<table>
<thead>
<tr>
<th>Output Created</th>
<th>Comments</th>
<th>Input</th>
<th>Syntax</th>
<th>Resources</th>
<th>Processor Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-AUG-2017 11:36:25</td>
<td>C:/Users/Farida/Documents/Analysis data.sav</td>
<td>C:/Users/Farida/Documents/Analysis data.sav</td>
<td>METHOD=ENTER REP</td>
<td>00:00:00.00</td>
<td>00:00:00.00</td>
<td></td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases*</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>98.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*a. Weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.302</td>
<td>.126</td>
<td>106.534</td>
<td>1</td>
<td>.000</td>
<td>3.675</td>
<td></td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td></td>
</tr>
</tbody>
</table>

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>-2 Log likelihood</th>
<th>Likelihood ratio chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Case Processing Summary

- Unweighted Cases: 376
- Selected Cases: 374
- Unselected Cases: 0

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Overall Percentage: 78.6

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>REP</td>
<td>.088</td>
<td>.131</td>
<td>450</td>
<td>.502</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: REP.

Logistic Regression

```
LOGISTIC REGRESSION VARIABLES MoreAssets / METHOD=ENTER REP / CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

Case Processing Summary

- Unweighted Cases: 376
- Selected Cases: 374
- Unselected Cases: 0

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>304</td>
</tr>
</tbody>
</table>

Overall Percentage: 81.3

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.469</td>
<td>.133</td>
<td>122.706</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Constant is included in the model.

b. The cut value is .500.
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>REP</th>
<th>.071</th>
<th>1</th>
<th>.789</th>
</tr>
</thead>
</table>

Overall Statistics | .071 | 1 | .789 |

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>.072</td>
<td>1</td>
<td>.789</td>
</tr>
<tr>
<td>Step 1 Block</td>
<td>.072</td>
<td>1</td>
<td>.789</td>
</tr>
<tr>
<td>Model</td>
<td>.072</td>
<td>1</td>
<td>.789</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360.530</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table*

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>304</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Overall Percentage: 81.3

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 REP</td>
<td>.037</td>
<td>.139</td>
<td>.071</td>
<td>1</td>
<td>.789</td>
<td>1.038</td>
</tr>
<tr>
<td>Constant</td>
<td>1.391</td>
<td>.318</td>
<td>19.079</td>
<td>1</td>
<td>.000</td>
<td>4.018</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: REP

LOGISTIC REGRESSION VARIABLES IncreasedConsumption /METHOD=ENTER REP /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT (0.5).

Logistic Regression

Notes

- Processor Time: 00:00:00.02
- Elapsed Time: 00:00:00.02

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table**

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>307</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Overall Percentage: 82.1

a. Constant is included in the model.

b. The cut value is .500

113
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>REP</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score</td>
<td>2.694</td>
<td>1</td>
<td>.101</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td>2.694</td>
<td>1</td>
<td>.101</td>
</tr>
</tbody>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Ch-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.750</td>
<td>1</td>
<td>.097</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>348.880</td>
<td>.007</td>
<td>.012</td>
</tr>
</tbody>
</table>

A. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>307</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>REP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E.</td>
</tr>
<tr>
<td></td>
<td>1.522</td>
<td>.155</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>315</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A. Constant is included in the model.

B. The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>REP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E.</td>
</tr>
<tr>
<td></td>
<td>1.675</td>
<td>.142</td>
</tr>
</tbody>
</table>

Logistic Regression

LOGISTIC REGRESSION VARIABLES NewBusiness /METHOD=ENTER REP /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Selected cases Missing Cases</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A. If weights in effect, see classification table for the total number of cases.

Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>315</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A. Constant is included in the model.

B. The cut value is .500
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>REP</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Block 1</th>
<th>Model</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Model Summary

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>REP</th>
<th>Constant</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>SPW</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Logistic Regression

<table>
<thead>
<tr>
<th>Variables</th>
<th>AverageIncome</th>
</tr>
</thead>
</table>

```logistic regression VARIABLES AverageIncome /METHOD=ENTER SPW /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).```

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>SPW</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Logistic Regression

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
</tr>
</thead>
</table>

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
</table>

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Constant</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>SPW</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
</table>
## Logistic Regression

### Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>1.622</td>
<td>1</td>
<td>.203</td>
</tr>
<tr>
<td>Block 1</td>
<td>1.622</td>
<td>1</td>
<td>.203</td>
</tr>
<tr>
<td>Model</td>
<td>1.622</td>
<td>1</td>
<td>.203</td>
</tr>
</tbody>
</table>

### Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>285.029</td>
<td>.004</td>
<td>.004</td>
</tr>
</tbody>
</table>

*a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.*

### Classification Table*

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>what is your average monthly income</td>
<td>non-poor</td>
</tr>
<tr>
<td>Step 1</td>
<td>non-poor</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>poor</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

*a. The cutoff value is .500*

### Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>-2.17</td>
<td>1.68</td>
<td>1</td>
<td>.197</td>
<td>0.117</td>
</tr>
<tr>
<td>Constant</td>
<td>2.429</td>
<td>.437</td>
<td>30.886</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

*a. Variable(s) entered on step 1: SPW.*

### Logistic Regression

Logistic Regression

Notes

- Output Created: 16-AUG-2017 11:30:47
- Comments: Data File: C:/Users/Farida/Documents/Analysis data.sav
- Input: Active Dataset: Datafile1, Filter: <none>, Weight: <none>, Split File: <none>
- Missing Value Handling: Definition of Missing: User defined missing values are treated as missing
- Syntax:
  - LOGISTIC REGRESSION VARIABLES IncreasedIncome /METHOD=ENTER SPW /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
  - LOGISTIC REGRESSION VARIABLES IncreasedIncome /METHOD=ENTER SPW /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

- Resources:
  - Processor Time: 00:00:00.00
  - Elapsed Time: 00:00:00.00

- [DataSet1] C:/Users/Farida/Documents/Analysis data.sav

### Case Processing Summary

<table>
<thead>
<tr>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Included in Analysis</td>
</tr>
<tr>
<td>N</td>
<td>Missing Cases</td>
</tr>
<tr>
<td>N</td>
<td>Total</td>
</tr>
</tbody>
</table>

*a. If weight is in effect, see classification table for the total number of cases.*

### Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

### Classification Table**

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has your income increased as a result of engaging in NDE programmes?</td>
<td>no</td>
</tr>
<tr>
<td>Step 1</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

*a. Constant is included in the model.*

### Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>1.695</td>
<td>1.43</td>
<td>100</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

### Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>Variables SPW</td>
<td>2.292</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>2.292</td>
<td>1</td>
</tr>
</tbody>
</table>
Block 1: Method = Enter

**Omnibus Tests of Model Coefficients**

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Block</td>
<td>2.217</td>
<td>1</td>
<td>.137</td>
</tr>
<tr>
<td>Model</td>
<td>2.217</td>
<td>1</td>
<td>.137</td>
</tr>
</tbody>
</table>

**Model Summary**

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>320.486</td>
<td>.006</td>
<td>.010</td>
</tr>
</tbody>
</table>

*a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.*

**Classification Table**

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>58</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>316</td>
</tr>
</tbody>
</table>

*a. The cut value is .500*

**Variables in the Equation**

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>-2.244</td>
<td>1.568</td>
<td>1</td>
<td>.132</td>
<td>.791</td>
</tr>
</tbody>
</table>

*a. Variable(s) entered on step 1: SPW.*

**Logistic Regression**

**Output Created** 16-AUG-2017 11:36:25

**Notes**

**Input Data**

C:\Users\Farida\Documents\Analysis data.sav

**Active Dataset**

DataSet1

**Filter**

<none>

**Weight**

<none>

**Split File**

<none>

**N of Rows in Working Data File**

376

**Missing Value Handling**

User-defined missing values are treated as missing

**Syntax**

LOGISTIC REGRESSION VARIABLES LivStandard /METHOD=ENTER REP
/Criteria=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

**Resources**

Processor Time: 00:00:00.00

Elapsed Time: 00:00:00.00

**Case Processing Summary**

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*a. If weight is in effect, see classification table for the total number of cases.*

**Dependent Variable Encoding**

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

**Block 0: Beginning Block**

**Classification Table**

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>58</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>294</td>
</tr>
</tbody>
</table>

*a. Constant is included in the model.*

*b. The cut value is .500*

**Variables in the Equation**

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>1.302</td>
<td>1.164</td>
<td>1</td>
<td>.001</td>
<td>3.675</td>
</tr>
</tbody>
</table>

**Variables not in the Equation**

<table>
<thead>
<tr>
<th>Score</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>.491</td>
<td>1</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>.491</td>
<td>1</td>
</tr>
</tbody>
</table>
Logistic Regression

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>387.82E-02</td>
<td>.001</td>
<td>.002</td>
</tr>
</tbody>
</table>

- Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Overall Percentage: 78.6

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REP</td>
<td>-0.088</td>
<td>.131</td>
<td>1</td>
<td>.902</td>
<td>.916</td>
</tr>
<tr>
<td>Constant</td>
<td>1.488</td>
<td>.308</td>
<td>23.296</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.366</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

Case Processing Summary

Unweighted Cases

- Included in Analysis: 376 (99.5)
- Missing Cases: 2 (.5)
- Total: 376 (100.0)

Dependent Variable Encoding

- no: 0
- yes: 1

Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.469</td>
<td>.133</td>
<td>122.706</td>
<td>1</td>
</tr>
</tbody>
</table>

Overall Statistics

- Score: 21.366
- df: 1
- Sig.: .000
### Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Block</th>
<th>Entropy</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>20.096</td>
<td>1</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Block 2</td>
<td>20.096</td>
<td>1</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>20.096</td>
<td>1</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

### Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>340.505</td>
<td>.052</td>
<td>.085</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

### Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 1</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>304</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The cut value is .500

### Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>SPW</td>
<td>-0.646</td>
<td>.144</td>
<td>20.055</td>
<td>1.524</td>
</tr>
<tr>
<td>Constant</td>
<td>3.057</td>
<td>.400</td>
<td>58.537</td>
<td>1</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: SPW.

### Logistic Regression

LOGISTIC REGRESSION VARIABLES Increased Consumption /METHOD=ENTER SPW /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

### Notes

- User-defined missing values are treated as missing.

### Case Processing Summary

- Unweighted Cases:
  - Included in Analysis: 374 (98.5%)
  - Selected Cases: 374
  - Total: 376

- Unselected Cases:
  - 2 cases (0.5%)

- Total: 376 (100.0%)

a. If weights are in effect, see classification table for the total number of cases.

### Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

### Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Step 0</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>307</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

### Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>SPW</td>
<td>9.011</td>
<td>1</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>

### Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>Variables</td>
<td>SPW</td>
</tr>
</tbody>
</table>

| Overall Statistics | 9.011 | 1 | .003 |

Block 1: Method = Enter
### Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>8.572</td>
<td>1</td>
<td>.003</td>
</tr>
<tr>
<td>Block</td>
<td>8.572</td>
<td>1</td>
<td>.003</td>
</tr>
<tr>
<td>Model</td>
<td>8.572</td>
<td>1</td>
<td>.003</td>
</tr>
</tbody>
</table>

### Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>343.058*</td>
<td>.023</td>
<td>.037</td>
</tr>
</tbody>
</table>

*a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.*

### Classification Table

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has your household consumption significantly improved as a result of engaging in NDE programmes?</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>0</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>0</td>
<td>307</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>82.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a. The cut value is .500*

### Logistic Regression

Logistic Regression

Output Created: 16-AUG-2017 11:29:34

**Dependent Variable Encoding**

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>

### Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in Analysis</td>
<td>374</td>
<td>99.5</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>100.0</td>
</tr>
</tbody>
</table>

### Variables in the Equation

<table>
<thead>
<tr>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0 Constant</td>
<td>5.75</td>
<td>.142</td>
<td>59.424</td>
<td>1</td>
<td>.005</td>
</tr>
</tbody>
</table>

### Variables not in the Equation

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0 Variables</td>
<td>5.867</td>
<td>1</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td>5.867</td>
<td>1</td>
</tr>
</tbody>
</table>

### Block 1: Method = Enter

**Omnibus Tests of Model Coefficients**

<table>
<thead>
<tr>
<th></th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>5.591</td>
<td>1</td>
<td>.018</td>
</tr>
<tr>
<td>Block</td>
<td>5.591</td>
<td>1</td>
<td>.018</td>
</tr>
<tr>
<td>Model</td>
<td>5.591</td>
<td>1</td>
<td>.018</td>
</tr>
</tbody>
</table>
## Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox &amp; Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>320.482</td>
<td>.015</td>
<td>.026</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

## Classification Table

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has the NDE programmes enabled you to set up a business or expand your existing business?</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Step 1 has the NDE programmes enabled you to set up a business or expand your existing business?</td>
<td>59</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
</tr>
</tbody>
</table>

a. The cut value is .500

## Variables in the Equation

<table>
<thead>
<tr>
<th>Step 1</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPW</td>
<td>-.366</td>
<td>.153</td>
<td>5.742</td>
<td>1</td>
<td>.017</td>
<td>.694</td>
</tr>
<tr>
<td>Constant</td>
<td>2.553</td>
<td>.407</td>
<td>39.283</td>
<td>1</td>
<td>.000</td>
<td>12.850</td>
</tr>
</tbody>
</table>

a. Variables entered on step 1: SPW.